Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapped in a ring - Ring-like protein complex helps ensure accurate protein production

20.02.2012
Published online in Nature Structural & Molecular Biology on 19 February 2012

In fairy tales, magic rings endow their owners with special abilities: the ring makes the wearer invisible, fulfils his wishes, or otherwise helps the hero on the path to his destiny.


The ring-like part of Elongator that holds tRNA in place is formed by three proteins (brown, green, blue) paired up in two trios. ©EMBL/S.Glatt

Similarly, a ring-like structure found in a protein complex called ‘Elongator’ has led researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC) in Strasbourg, France, in exciting new directions. Published today in Nature Structural & Molecular Biology, the first three-dimensional structure of part of this complex provides new clues to its tasks inside the cell and to its role in neurodegenerative diseases.

Changes to the proteins that make up Elongator have been linked to disorders such as familial dysautonomia and childhood epilepsy, and scientists knew that the complex is involved in a variety of processes inside the cell, but exactly what it does has so far remained a mystery.

Elongator is composed of 6 different proteins. Scientists in Christoph Müller’s lab at EMBL and Bertrand Séraphin’s lab at IGBMC looked at three of these proteins, which are known to work together. They discovered that, instead of just clumping together as a trio, these proteins team up in two identical trios to form a ring. This unexpected structure sparked new thoughts. It suggested that the ring’s job in the Elongator complex might be similar to that of other protein complexes, called helicases, which use ring-like structures made out of six copies of the same protein to bind to DNA or RNA.

The researchers found only one molecule that slots into Elongator’s ring: tRNA. tRNA transports amino acids to the ‘factories’ in the cell where they will be stitched together into a protein according to the instructions spelled out in the cell’s DNA. It seems that Elongator’s protein ring holds the tRNA in place while other parts of the Elongator complex work on it, introducing a chemical modification which ultimately ensures that the DNA is accurately converted into protein. The findings also suggest that, once work on the tRNA is complete, a different molecule, ATP, is broken down on the outer margin of the ring. This, the scientists believe, would subtly alter the shape of the ring’s proteins, releasing the tRNA and allowing the whole process to start again.

Next, Müller, Séraphin and colleagues would like to investigate what tools and tricks other parts of Elongator employ to help the whole complex perform its tasks inside the cell.

Published online in Nature Structural & Molecular Biology on 19 February 2012. DOI: 10.1038/nsmb.2234

Deutsch Kontakt:
Angela Michel
Meyerhofstr. 1, 69117 Heidelberg, Deutschland
Tel.: +49 (0)6221 387 8443
Fax: +49 (0)6221 387 8525
michel@embl.de
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Discovery of genes involved in the biosynthesis of antidepressant
09.12.2019 | Leibniz Institute of Plant Genetics and Crop Plant Research

nachricht Scientists have spotted new compounds with herbicidal potential from sea fungus
09.12.2019 | Far Eastern Federal University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>