Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transmission of measles virus: Interaction with two cell receptors is required

01.06.2018

Researchers at the Paul-Ehrlich-Institut have reproduced measles virus transmission in an animal model. They were able to show that an efficient interaction with two cellular receptors plays a decisive role in the efficient transmission of the virus. These findings could be significant for the development of therapeutics. The results of this research were reported online in the Journal of Virology on May 24 2018

Measles virus is highly contagious. The probability of contracting the virus from an infected individual is greater than 90 percent, unless the person in question has been previously infected early in life or been vaccinated.


Measles Virus

Source: C. Goldsmith, W. Bellini / CDC

Despite current efforts to eradicate measles, local outbreaks occur occasionally due to insufficient vaccine coverage in the general population. Germany currently lags behind the rest of Europe in its efforts to eradicate measles. In 2017, the number of measles infections in Germany increased three-fold compared to 2016, and a total of 929 cases were reported in 2017.

Measles virus, like the highly infectious canine distemper virus used in this study, belongs to the genus Morbillivirus. It is known that during infection and replication the virus interacts with the infected host using two different receptors on host cells. Measles virus first uses a receptor on immune cells during infection, replicates at this location, and then later uses a second receptor on cells in the respiratory tract where they are then transmitted to the next host.

However, little is known about the extent to which the interaction between the virus and one or both cell receptors is responsible for transmission of the pathogen. Furthermore, researching the underlying mechanisms for measles presents a challenge because humans are the only hosts for measles virus.

Prof. Dr. Veronika von Messling, head of the Division Veterinary Medicine at the Paul-Ehrlich-Institut, and her research team have developed a surrogate model to research morbilliviruses. They use ferrets which are highly susceptible to canine distemper virus, a close relative of measles virus.

To identify the significance of receptor interactions for transmission, the researchers at PEI, in collaboration with researchers at the Mayo Clinic in Rochester, Minnesota, USA, infected ferrets with the natural canine distemper virus or virus mutants that were no longer able to interact with either of the cellular receptors.

As expected, the ferrets which came into contact with the natural canine distemper virus became infected and developed disease. In this context, animals that had already contracted the disease transmitted the virus in the most efficient manner. Conversely, genetically modified viruses which were able to use only one of the receptors were transmitted in isolated cases and did not cause disease.

This work provides proof of the significance of cellular receptor interactions for morbillivirus transmission. This interaction is also of central importance for viral spread. Clinically, these findings could be useful for the development of active substances that prevent this interaction in a targeted manner.

One advantage of such a strategy is that the development of resistance is highly unlikely. Those who could benefit from this strategy would be individuals lacking immunity to measles who would require treatment after coming into contact with measles-infected persons.

However, vaccination remains the best protection against measles.

Original Publication:
Sawatsky B, Cattaneo R, von Messling V (2018): Canine Distemper Virus Spread and Transmission to Naive Ferrets: Selective Pressure on SLAM-Dependent Entry.
J Virol [Epub ahead of print].

DOI: 10.1128/JVI.00669-18


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://jvi.asm.org/content/early/2018/05/17/JVI.00669-18.abstract - Abstract of this publication
https://www.pei.de/EN/information/journalists-press/press-releases/2018/08-trans... - This press release on the Paul-Ehrlich-Institut Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>