Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transmission of measles virus: Interaction with two cell receptors is required

01.06.2018

Researchers at the Paul-Ehrlich-Institut have reproduced measles virus transmission in an animal model. They were able to show that an efficient interaction with two cellular receptors plays a decisive role in the efficient transmission of the virus. These findings could be significant for the development of therapeutics. The results of this research were reported online in the Journal of Virology on May 24 2018

Measles virus is highly contagious. The probability of contracting the virus from an infected individual is greater than 90 percent, unless the person in question has been previously infected early in life or been vaccinated.


Measles Virus

Source: C. Goldsmith, W. Bellini / CDC

Despite current efforts to eradicate measles, local outbreaks occur occasionally due to insufficient vaccine coverage in the general population. Germany currently lags behind the rest of Europe in its efforts to eradicate measles. In 2017, the number of measles infections in Germany increased three-fold compared to 2016, and a total of 929 cases were reported in 2017.

Measles virus, like the highly infectious canine distemper virus used in this study, belongs to the genus Morbillivirus. It is known that during infection and replication the virus interacts with the infected host using two different receptors on host cells. Measles virus first uses a receptor on immune cells during infection, replicates at this location, and then later uses a second receptor on cells in the respiratory tract where they are then transmitted to the next host.

However, little is known about the extent to which the interaction between the virus and one or both cell receptors is responsible for transmission of the pathogen. Furthermore, researching the underlying mechanisms for measles presents a challenge because humans are the only hosts for measles virus.

Prof. Dr. Veronika von Messling, head of the Division Veterinary Medicine at the Paul-Ehrlich-Institut, and her research team have developed a surrogate model to research morbilliviruses. They use ferrets which are highly susceptible to canine distemper virus, a close relative of measles virus.

To identify the significance of receptor interactions for transmission, the researchers at PEI, in collaboration with researchers at the Mayo Clinic in Rochester, Minnesota, USA, infected ferrets with the natural canine distemper virus or virus mutants that were no longer able to interact with either of the cellular receptors.

As expected, the ferrets which came into contact with the natural canine distemper virus became infected and developed disease. In this context, animals that had already contracted the disease transmitted the virus in the most efficient manner. Conversely, genetically modified viruses which were able to use only one of the receptors were transmitted in isolated cases and did not cause disease.

This work provides proof of the significance of cellular receptor interactions for morbillivirus transmission. This interaction is also of central importance for viral spread. Clinically, these findings could be useful for the development of active substances that prevent this interaction in a targeted manner.

One advantage of such a strategy is that the development of resistance is highly unlikely. Those who could benefit from this strategy would be individuals lacking immunity to measles who would require treatment after coming into contact with measles-infected persons.

However, vaccination remains the best protection against measles.

Original Publication:
Sawatsky B, Cattaneo R, von Messling V (2018): Canine Distemper Virus Spread and Transmission to Naive Ferrets: Selective Pressure on SLAM-Dependent Entry.
J Virol [Epub ahead of print].

DOI: 10.1128/JVI.00669-18


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://jvi.asm.org/content/early/2018/05/17/JVI.00669-18.abstract - Abstract of this publication
https://www.pei.de/EN/information/journalists-press/press-releases/2018/08-trans... - This press release on the Paul-Ehrlich-Institut Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht New Therapy Promotes Vascular Repair Following Stroke
25.06.2019 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

Robocabs: The mobility of the future?

25.06.2019 | Studies and Analyses

Skipping Meat on Occasion May Protect Against Type 2 Diabetes

25.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>