Transforming skin cells into stem cells using a molecular toolkit

C&EN Associate Editor Sarah Everts notes that in 2006, researchers in Japan figured out a way to use genetic engineering to coax a skin cell to become a so-called “pluripotent” stem cell — a type of cell that can potentially morph or change into any cell of the human body. The scientists achieved the result by infecting the skin cell with a virus containing certain genes instructing the cell to change.

Now chemists are trying to reproduce this cellular alchemy with drug-like substances because gene therapies have faced trouble getting into the clinic. Scientists are looking for chemical ways to go backward in cell development — to reprogram mature cells into stem cells. Others are trying to identify substances that can morph one cell directly into other cell types — for example, from a skin cell directly into a nerve cell that might treat Parkinson's disease — without the use of stem cells at all. The ultimate goal is to be able to reprogram any cell of the body into another by means of a simple molecular kit, the article notes. But as chemists start putting together toolkits with these drug-like molecules, they face many technical hurdles as well as challenges getting acceptance from the stem cell community.

ARTICLE FOR IMMEDIATE RELEASE
“Back to the future with stem cells”
This story is available at
http://pubs.acs.org/cen/science/88/8806sci1.html

Media Contact

Michael Bernstein EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors