Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming plant cells from generalists to specialists

07.12.2016

Proteins team up to trigger stem cell differentiation in plant roots

As a growing plant extends its roots into the soil, the new cells that form at their tips assume different roles, from transporting water and nutrients to sensing gravity.


The green glowing center of this Arabidopsis root contains a protein that helps transform immature precursor cells into some of the specialized cells that make up the plant's root tip. Researchers are trying to figure out how a plant or animal makes different cell types from the same set of genetic instructions.

Photo by Erin Sparks, Duke University

A new study points to one way by which these newly-formed cells, which all contain the same DNA, take on their special identities.

Researchers have identified a set of DNA-binding proteins in the roots of the plant Arabidopsis thaliana that work in combination to help precursor cells selectively read different parts of the same genetic script and acquire their different fates.

Led by researchers at Duke University, the study offers clues to a longstanding question in developmental biology, namely how plants and animals make so many types of cells from the same set of instructions.

The findings appear in the Dec. 5 issue of the journal Developmental Cell.

Plant and animal tissues start off as immature cells called stem cells. In order for these unspecialized cells to acquire the characteristics that make a leaf cell different from a root cell or a blood cell different from a muscle cell, they must turn on different subsets of genes to produce the proteins responsible for each cell type's distinctive properties.

"It's a chicken and egg problem," said first author Erin Sparks, a post-doctoral associate with Duke biology professor Philip Benfey. How do cells start to turn on different genes if they're all the same to begin with?

Sparks, Benfey and colleagues think they've identified one way in Arabidopsis.

A cousin of cabbage and radishes, Arabidopsis is the laboratory mouse of the plant world. The plant's tiny threadlike roots are built from roughly 15 types of cells, each with its own set of duties.

Only some of the plant's 30,000 genes are active in a given root cell at a given time, thanks to proteins called transcription factors that turn genes on and off as needed.

The study focused on a key transcription factor in Arabidopsis called "Short-root," so named because plants with harmful versions of the Short-root gene have stunted roots.

Over the past several decades, Benfey and colleagues have shown that Short-root acts as a master switch, initiating the process that transforms general purpose precursor cells into the specialized cells found in certain parts of the Arabidopsis root.

Previous research found that Short-root activates other transcription factors as well, creating a cascade in which each gene-regulating protein controls the next in the root development pathway.

Researchers have identified many of Short-root's gene targets, but weren't sure what controlled the Short-root master switch itself to kick off the cascade.

The answer, the new study shows, lies in not one but multiple DNA-binding proteins.

Sparks used a modified version of a technique called a yeast one-hybrid assay to identify more than 20 root proteins that would likely bind to the promoter region of the Short-root gene to control its activity.

Sure enough, plants with mutant versions of these DNA-binding proteins produced root cells with altered levels of Short-root.

Some binding proteins work by turning on the Short-root gene and others by shutting it down. Though most of these proteins are present in multiple root cell types, the researchers found, their statistical models and experiments in living plants suggest the combined effect is to activate the Short-root master switch in some cells but not others.

"It's all about the balance between activators and repressors," Sparks said. "It's their coordinated effect that turns Short-root on or off."

Similar mechanisms could initiate cell differentiation in other plant species too, Sparks said. If so, it could make cell fate more resilient to random mutations in a plant's genetic code, even when such changes keep some gene-regulating proteins from binding their intended DNA targets.

"By spreading the responsibility we can buffer the system against small changes," Sparks said.

###

Other authors include Colleen Drapek, Ning Shen, Jessica Hennacy, Jingyuan Zhang, Jalean Petricka, Alexander Hartemink and Raluca Gordân of Duke; Allison Gaudinier, Gina Turco, Jessica Foret and Siobhan Brady of the University of California-Davis; Song Li of Virginia Tech, and Mitra Ansariola and Molly Megraw of Oregon State University.

This research was supported by the National Science Foundation (IOS-1021619, DGE-1148897), the National Institutes of Health (R01-GM043778, GM097188, GM086976), the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (GBMF3405).

CITATION: "Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors," Erin Sparks, et al. Developmental Cell, Dec. 5, 2016. DOI: 10.1016/j.devcel.2016.09.031

Media Contact

Robin Smith
ras10@duke.edu
919-681-8057

 @DukeU

http://www.duke.edu 

Robin Smith | EurekAlert!

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>