Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traitorous immune cells promote sudden ovarian cancer progression

21.02.2012
First model of aggressive ovarian cancer demonstrates immune system's active role in tumor progression

Aggressive ovarian tumors begin as malignant cells kept in check by the immune system until, suddenly and unpredictably, they explode into metastatic cancer. New findings from scientists at The Wistar Institute demonstrate that ovarian tumors don't necessarily break "free" of the immune system, rather dendritic cells of the immune system seem to actively support the tumor's escape. The researchers show that it might be possible to restore the immune system by targeting a patient's own dendritic cells.

"Our model shows where the cancer is kept in check for relatively long periods, but once they become noticeable, tumors grow exponentially," said José R. Conejo-Garcia, M.D., Ph.D., an associate professor at Wistar and leader of the Tumor Microenvironment and Metastasis Program of Wistar's Cancer Center. "More importantly, we show that by depleting these dendritic cells of the immune system, we can reverse the effect, once again allowing our immune system to recognize the ovarian tumors."

Their findings, presented in the March issue of the Journal of Experimental Medicine, available online now, represent the first successful attempt to model the tumor microenvironment of human ovarian cancer in a mouse model of the disease. In essence, the model replicates the inflammatory surroundings that ovarian tumors experience in humans. The more accurate model provides a better tool for researchers to understand, prevent, and treat tumors.

"Our system uses oncogene-driven tumors that are spontaneously antigenic, thus avoiding the use of artificial foreign antigens that do not accurately replicate what drives anti-tumor immune responses in humans," Conejo-Garcia said.

Ovarian cancer remains one of the most deadly forms of cancer in women. According to the National Cancer Institute, 21,990 women will be diagnosed with ovarian cancer, and 15,460 women will die of the disease this year Because early-stage ovarian cancer does not often exhibit noticeable symptoms, many women are not diagnosed until the cancer is at a later stage, when it is most difficult to treat.

"While we have seen an increase in survival rates for most cancers over the last 40 years, ovarian cancer survival has only improved slightly since the 1970's," Conejo-Garcia said. "We created our ovarian cancer model to get a better understanding of how these tumors acquire such aggressive characteristics and evade the immune system."

According to Conejo-Garcia, their model demonstrates how a localized ovarian tumor flares into an aggressive metastatic disease.

"You can see where, if one ovary is cancerous, it is almost unrecognizable until an instantaneous moment, when it explodes into exponential growth," Conejo-Garcia said. "The key to this moment, our evidence suggests, is in the phenotypic changes taking place in the dendritic cells that are part of the tumor microenvironment."

In healthy tissue, dendritic cells function as sort of alarm system to alert the adaptive part of the immune system to potential threats. They work as antigen-presenting cells, offering foreign or disease-causing molecules (called antigen) to the white blood cells that can then respond to an infection or, in this case, tumorous growths. Amid the ovarian cancer microenvironment, dendritic cells also induce the immune system to attack tumor cells and inhibit their growth.

Until, that is, dendritic cells seem to switch sides.

"We see a change in the dendritic cells themselves, which allows tumors to progress to terminal disease in a very short time," Conejo-Garcia said. "Interestingly, the tumors themselves are still immunogenic—they could still otherwise elicit an immune response—it is just that the dendritic cells are actively suppressing the involvement of other anti-tumor immune cells; primarily T cells."

Conejo-Garcia and his colleagues believe that their findings offer a twist on the emerging theory of "cancer immunoeditting." The immunoeditting hypothesis suggests that the immune system actively "edits" tumor cells to eliminate antigens that are recognized by immune cells, keeping the cancer at bay before it becomes symptomatic. All symptomatic tumors, therefore, represent a failure of the immune system, where tumors lose their immunogenicity—their ability to trigger and be recognized by our immune system.

The researchers found that that depleting dendritic cells early on accelerating tumor expansion, while removing dendritic cells later on actually delayed the tumor's progression. According to Conejo-Garcia, their findings suggest it is a change in the immune system itself, specifically the dendritic cells, and not primarily any loss of immunogenicity on the part of the tumor.

"It is almost as if anti-tumor T cells become exhausted, they can no longer keep up the effort," Conejo-Garcia said. "Still, our findings suggest that the enduring activity of these T cells would allow us to control metastatic ovarian cancer by targeting the dendritic cells that actively prevent their anti-tumor functions."

In fact, Conejo-Garcia and his colleagues have already developed a strategy to reprogram traitorous dendritic cells. In a an upcoming edition of the journal Cancer Research, available online now, the researchers demonstrate how synthetic RNA molecules can be used to win back the allegiance of dendritic cells and restore their ability to stimulate tumor suppression.

Funding for this research was provided through grants from the National Cancer Institute and the Department of Defense.

The lead author of the study is Uciane K. Scarlett, Ph.D., a staff scientist in the Conejo-Garcia laboratory. Wistar co-authors also include Melanie R. Rutkowski, Ph.D. and Ximena Escovar-Fadul. Co-authors from Darmouth Medical School include Adam M. Rauwerdink, Ph.D., Jennifer Fields, Jason Baird, Juan R. Cubillos-Ruiz, Ph.D. (currently at Harvard University), Ana C. Jacobs, Jorge L. Gonzalez, M.D., John Weaver, Ph.D., and Steven Fiering, Ph.D.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>