Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking breast cancer cells on the move

14.06.2012
An important gene for bone metastasis

Breast cancer cells frequently move from their primary site and invade bone, decreasing a patient's chance of survival.

This process of metastasis is complex, and factors both within the breast cancer cells and within the new bone environment play a role. In next week's Journal of Biological Chemistry "Paper of the Week," Roger Gomis and colleagues at the Institute for Research in Biomedicine in Spain investigated how breast cancer cells migrate to bone.

In particular, they examined the role of NOG, a gene important to proper bone development. Previously, NOG was associated with bone metastasis in prostate cancer, but its specific role in breast cancer to bone metastasis remained unknown.

Gomis and colleagues showed that once breast cancer cells are on the move NOG enables them to specifically invade the bone and establish a tumor. It does this in two ways. First, NOG escalates bone degeneration by increasing the number of mature osteoclasts (bone cells that break down bone), essentially creating a spot in the bone for the metastatic breast cancer cells to take up residence. Second, NOG keeps the metastatic breast cancer cells in a stem-cell-like state, which enables them to propagate and form a new tumor in the bone environment.

Gomis explains that the reason NOG expression leads to an increased potential for breast cancer to bone metastasis is because it not only affects features inherent to aggressive cancer cells (such as the ability to establish a new tumor) but also influences properties of the bone environment (such as osteoclast degeneration of bone).

From the article: "Identification of NOG as a specific breast cancer bone metastasis-supporting gene" by Maria Tarragona, Milica Pavlovic, Anna Arnal-Estapé, Jelena Urosevic, Mònica Morales, Marc Guiu, Evarist Planet, Eva González-Suárez, Roger R. Gomis

Link to "Paper in Press": http://www.jbc.org/content/early/2012/04/30/jbc.M112.355834.full.pdf+html

Corresponding author: Roger R. Gomis, Oncology Programme, Institute for Research in Biomedicine in Barcelona, Spain; e-mail: roger.gomis@irbbarcelona.org

About the American Society for Biochemistry and Molecular Biology
The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>