Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracing cerebral cortex evolution, cell by cell

04.05.2018

Molecular atlases of turtle and lizard brains shed light on the evolution of our own brain

Our cerebral cortex, a sheet of neurons, connections and circuits, comprises “ancient” regions such as the hippocampus and “new” areas such as the six-layered “neocortex”, found only in mammals and most prominently in humans.


Snapshot of the turtle three-layered cortex (left) and distinct types of neurons in the turtle dorsal cortex (right).

Max Planck Institute for Brain Research

But when in evolution did the components of cerebral cortex arise and how did they evolve? Scientists at the Max Planck Institute for Brain Research in Frankfurt am Main studied gene expression in the neurons of the cortex of turtles and lizards, and found unexpected similarities and differences with the mammalian cortex. These results, published in the journal Science, are a milestone towards reconstructing the evolution of the vertebrate brain.

We are, in many ways, our cerebral cortex. Its circuits serve to shape our perception of the world, store our memories and plan our behavior. A cerebral cortex, with its typical layered organization, is found only among mammals, including humans, and non-avian reptiles such as lizards and turtles. Mammals, reptiles and birds originate from a common ancestor that lived some 320 million years ago.

Neuroscientists believe that this ancestor had a small cortex with three layers, because a similar structure is found today in the hippocampus of mammals and in all cortices of modern reptiles: these three-layered cortices likely correspond to their common ancestral cortex.

By comparing the cortex of today’s reptiles to the old and new cortices of today’s mammals (such as hippocampus and neocortex, respectively), we can search for similarities—potential ancestral traits—and differences—resulting from their independent evolutions—and thus reconstruct the main features of cortical evolution.

Comparisons were, until now, based on developmental and anatomical features. This new study, based on the molecular characterization of individual reptilian neurons, provides unprecedented data to help reconstruct cortex evolution.

For decades, the anatomical differences between reptilian and mammalian brains have fueled many disputes about cortical evolution. People argued on whether this part of the reptilian brain corresponds to that part of the mammalian brain, or whether the many layers found in mammalian neocortex actually exist also in reptiles, but in a form that is not detectable with traditional methods.

Gilles Laurent and his group at the Max Planck Institute for Brain Research took a different approach and focused on the molecular characterization of the myriad neuronal types that make up cortical circuits.

Neuronal “types” differ, among others, by their morphology, neurotransmitters, connections and functional properties. These features all result from the expression of different sets of genes; hence individual neurons can be classified (or typed) by measuring the messenger RNA molecules they contain (their “transcriptome”).

Maria Antonietta Tosches, the first author of this study, and her colleagues sequenced the transcriptomes of turtle and lizard cells after capturing them, one by one, in microscopic water droplets using specialized microfluidics platforms.

Using these gene expression profiles, the scientists could categorize thousands of neurons. From each type they could identify diagnostic marker genes, and use them to assess the position of the cell types in the brain. Imagine a picture of the cortex, uniform until then, suddenly transformed into a collage of colored zones, with each zone containing one or several characteristic cell types.

The authors could now compare reptilian molecular maps to those of mammalian brains directly, find one-to-one correspondences and even draw hypotheses about the brain of their common ancestor of 320M years ago (now extinct).

“Our results tremendously clarify our understanding of the reptilian brain and thus, of brain evolution”, Tosches says. These new molecular maps show, for example, that reptiles have neuron types that correspond to those found in the mammalian hippocampus, a structure involved in spatial orientation and in the formation of memories. In reptiles, the hippocampus is found towards the center of the brain, but unlike its folded-up mammalian counterpart, looks like a single sheet. “It is as if, in early mammals, the ancestral hippocampus had been pushed by an increasingly dominant neocortex and forced to fold onto itself, to acquire its signature mammalian architecture”, Laurent adds.

The non-hippocampal reptilian cortex, by contrast, revealed the intricate history of mammalian neocortex. Inhibitory neurons, for example, express similar sets of genes in reptiles and mammals, indicating a common ancestry. Excitatory neurons, however, differ substantially across these two groups. “The mammalian six-layered neocortex is a fascinating mosaic of ancient and new neuronal types”, says Tosches. The scientists can now point to the true novelty of the mammalian neocortex, that is, the emergence of new types of excitatory neurons after profound changes of gene expression programs.

This study opens up many new questions. Do ancient neuronal types have the same functions in reptilian and mammalian cortical circuits? And can these molecular similarities and differences inform us on the evolution of brain function and animal behavior? “There is a lot more to explore from these new molecular maps” says Laurent: “this is only the beginning”.

Publication: Tosches, M.A., Yamawaki, T.M., Naumann, R.K., Jacobi, A.A., Tushev, G. and Laurent, G. (2018). Evolution of pallium, hippocampus and cortical cell types revealed by single-cell transcriptomics in reptiles. Science (available as of May 3, 2018)

Weitere Informationen:

https://brain.mpg.de/news-events/news/news/archive/2018/may/article/tracing-cere...
https://brain.mpg.de/research/laurent-department/images-movies.html

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung

Further reports about: Hirnforschung Max Planck Institute cerebral cortex mammalian neurons reptiles

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>