One-touch make-up – for our cells

The cells in the different parts of this video are always the same, but, like actors using make-up to highlight different facial features, they have fluorescent labels that mark different cellular components in different colours: blue shows the nucleus, yellow shows tubulin (a component of the cell’s scaffolding), red shows mitochondria, cyan shows the membranes of vesicles called endosomes, and purple shows other membrane structures.

Instead of spending hours applying first one colour of make-up – or fluorescent label – and then another, scientists were able to create the equivalent of a make-up brush that is applied only once and highlights different features simultaneously.

The underlying technique was first developed by Imre Berger from the European Molecular Biology Laboratory (EMBL) in Grenoble, France, as part of a method called MultiBac, for expressing protein complexes in insect cells. In work published today in Nature Communications, Imre Berger and Philipp Berger from the Paul Scherrer Institut (PSI) in Villigen, Switzerland, joined forces to adapt this technology concept to mammalian cells like our own for the first time. It essentially involves rapidly engineering a single vector to deliver a theoretically unlimited number of foreign genes, to a cell.

To date, the scientists have successfully delivered up to 15 genes in this way. The protein encoded by each of those genes can carry a fluorescent label, so this makes multiple labelling much more efficient than previous methods. The new labelling technique for mammalian cells, called MultiLabel, could help make drug development and screening considerably faster, since it allows scientists to precisely label many cellular components involved in a given disease process and follow them all at the same time.

Imre Berger’s work is supported by the EC FP7 project P-CUBE, which provides access to state-of-the-art technology platforms at EMBL in Grenoble, Heidelberg and Hamburg.

The video is also available on the EMBL YouTube Channel at http://www.youtube.com/watch?v=5Po7gyPWqps.

Image & Video Credits: P. Berger / PSI.

Published online in Nature Communications on 17th November 2010. DOI: 10.1038/ncomms1120

Policy regarding use

EMBL press, picture and video releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors