Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much Salt in Food can push the Immune System out of Equilibrium

21.10.2015

Too much salt in food can influence the immune system. In a study published recently in the Journal of Clinical Investigation*, Dr. Katrina Binger, Matthias Gebhardt, and Professor Dominik Müller from the Experimental Clinical Research Center (ECRC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité – Universitätsmedizin Berlin establish that increased salt consumption by rodents leads to delayed healing of their wounds because too much salt pushes the immune system out of equilibrium. At the same time, they were successful in explaining the mechanism causing this imbalance.

Too much salt in food is unhealthy. Physicians and scientists studying nutrition agree on this and warn of consuming too much salt. It is well known that table salt (sodium chloride) can drive blood pressure upwards. It may also be partly responsible for cardiovascular disease, chronic diseases, autoimmune diseases, as well as cancer.

“However, we still don’t understand the underlying mechanisms causing this response,” says Professor Müller. “And we don’t know how much salt is too much, that is, how much salt we can eat without compromising our health.”

Genetics play a large part in the diseases mentioned, yet the sharp rise in inflammatory diseases as well as autoimmune diseases – in which the immune system mistakenly destroys endogenous structures – suggests that environmental factors also contribute to these diseases in an important way. “Western” eating habits characterized by high fat and salt levels have recently come under particular suspicion.

It has become clear the last few years that excessive salt in food also has effects on the immune system, and in diverse ways. In their study recently published in the Journal of Clinical Investigation, Dr. Binger, Matthias Gebhardt, and Professor Müller furnish proof that too much salt in food weakens a specific group of scavenger cells (macrophages) in the immune system.

Macrophages are the first responders to infection and are important in warding off a variety of pathogens. One of whose jobs is to combat inflammation in the body. A particular type of these cells, known as type 2 macrophages, also play a critical role in repairing wounds and combating too much inflammation. In rodents fed a high-salt diet, wound healing was delayed – in part of course because of the salt-related weakening of these particular scavenger cells, as the scientists surmised.

A research team headed by Professor Jens Titze, Vanderbilt University (Nashville, Tennessee USA), together with the Berlin researchers recently discovered a new salt reservoir in the body Excess salt is deposited in the interstitium of tissues like skin rather than in the blood, for example, since the kidneys continuously regulate the salt content there. These new insights enabled the three MDC scientists to also explain the mechanism of how table salt weakens the activity of the macrophages.

A group of researchers including Professor Müller had first discovered a different effect of salt on the immune system in 2013. In a study published in Nature, they had proven that elevated salt consumption promotes the development of autoimmune diseases. The reason: too much salt leads to a sharp rise of a group of aggressive immune cells (Th17 helper cells). These T helper cells that produce the messenger compound interleukin 17 (hence their name) are partly to blame for the immune system running wild, attacking and damaging its own organism.

Professor Titze, Professor Müller, and Matthias Gebhardt jointly with other researchers produced the first evidence early this year that high salt consumption in both rodents and patients puts the immune system in high gear and finishes off bacterial infections in the skin (Cell Metabolism). The reason: salt gets deposited in the skin and, in the event of a bacterial skin infection, activates type 1 macrophages that release increased bactericides. In this situation however, Professor Müller warns against eating too much salt: “The risks outweigh the benefits.” Moreover: “These seemingly contradictory findings indicate macrophages can adapt in different ways to an environment that itself changes with elevated salt volumes in the body.

*High salt reduces the activation of IL-4+IL-13 stimulated 1 macrophages
Katrina J. Binger1,2,12, 13, Matthias Gebhardt1,2,12, Matthias Heinig2, Carola Rintisch2, Agnes Schroeder3, Wolfgang Neuhofer4, Karl Hilgers3, Arndt Manzel3, Christian Schwartz3, Markus Kleinewietfeld5,6, Jakob Voelkl7, Valentin Schatz8, Ralf A. Linker3, Florian Lang7, David Voehringer3, Mark D. Wright9, Norbert Hübner2, Ralf Dechend1,10, Jonathan Jantsch8, Jens Titze3,11, Dominik N. Müller1,2,13
1Experimental and Clinical Research Center, an institutional cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
2Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany; German Centre for Cardiovascular Research Partner Site Berlin, Germany
3University Hospital Erlangen at the Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
4Ludwig-Maximillian-University of Munich, Munich, 80539, Germany
5Translational Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, 01307, Germany
6DFG-Center for Regenerative Therapies Dresden (CRTD), Dresden, 01307, Germany
7University of Tübingen, Tübingen, 72076, Germany
8University Hospital Regensburg, Regensburg, 93053, Germany
9Department of Immunology, Monash University, Melbourne, 3004, Australia
10HELIOS-Klinikum Berlin, Berlin, 13125, Germany
11Vanderbilt University, Nashville, TN, 37235, USA
12equal contribution
13correspondance to:
Dominik N. Muller, Tel: +40 (0)30 450-540 286. E-mail: dominik.mueller@mdc.de
Katrina J. Binger Tel: +61 (0)3 8532 1111. E-mail: katrinabinger@gmail.com

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Weitere Informationen:

http://www.jci.org/articles/view/80919?key=1d778b73341d560671fd
http://dx.doi.org/10.1038/nature11868
http://dx.doi.org/10.1016/j.cmet.2015.02.003
https://www.mdc-berlin.de/40398578/en/news/archive/2013/20130305-joint_press_rel...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>