Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Together we are unpredictable: why sailfish hunt more successfully as a group

13.02.2017

Sailfish are large oceanic predatory fish that attack their prey with their long, sharp bills. When hunting, individuals increase their success rate by specialising in one attacking side, as a team led by researcher Dr. Ralf Kurvers from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) has now been able to show. The crucial factor: Sailfish always hunt in groups containing roughly the same number of individuals that attack from the right as those that attack from the left. In this way, their prey is unable to predict from which side the attack will occur.

Predators and their prey evolve together: it is vital for predators to develop effective hunting strategies, whereas the prey species is intent on evading its attackers. An international team of researchers involving IGB has investigated the predator-prey relationship between sailfish (Istiophorus platypterus) and sardines (Sardinella aurita).


A sailfish approaching its prey.

Photo: Rodrigo Friscione

“When attacking, most sailfish specialise in attacks from either the left or the right, enabling them to attack more effectively,” reported Dr. Ralf Kurvers, lead author of the study whose results have now been published in the journal Current Biology.

The researcher and his team discovered that specialisation in attacking from the left or right – referred to technically as laterality – has its advantages in hunting. In fact, the more strongly an individual was lateralized, the more successful it was in capturing prey: the fish can attack very quickly with their preferred side.

This is an advantage because sardines are considerably more agile than their hunters. However, sailfish are only successful predators because they hunt in groups: a single sailfish that always attack from either the left or the right will have difficulty catching its prey, because the prey can then easily predict the side of attack.

The researchers were able to show that the key advantage of hunting in a group is that the prey species is unable to predict whether the sailfish are specialised in attacking from the left or from the right – making the predators more unpredictable to their prey. “The larger the group, the more balanced the left/right relationship is, and the more successful the sailfish will be in hunting sardines,” reported Dr. Kurvers.

In their study, the researchers analysed a total of 365 attacks by 73 sailfish, which occurred in 11 groups with up to 14 individuals per group, in the open ocean off the coast of Mexico. In a morphological analysis, the researchers also examined signs of wear in the microteeth on the long bill used by the predatory fish to attack their prey. This analysis confirmed that most fish prefer to attack from the left or from the right.

The fact that sailfish hunt in groups enables them – in evolutionary terms – to develop a very distinct specialisation. "Our study has enabled us to prove an important advantage that sailfish have when hunting in a group which, until now, was unknown,” explained Dr. Ralf Kurvers.

Incidentally, with around half of the sailfish preferring to attack from the right and the other half specialising in attacks from the left, laterality in sailfish differs from handedness in humans: some 90 per cent of the world’s population are right-handed, with only ten per cent preferring to use the left hand. “Using the same hand is useful when it comes to cooperative activities, which is why a predominant use of one hand has developed in the course of human evolution. The fact that left-handers still exist is explained by the advantages of this alternative laterality which, however, no longer plays an important role in today’s society – namely unpredictability in battle. Around half of top fencers, for example, are still left-handed, and the other half right-handed,” explained Dr. Kurvers.

Link to study: http://www.sciencedirect.com/science/article/pii/S0960982216315251

Kurvers RHJM, Krause S, Viblanc PE, Herbert-Read JE, Zaslansky P, Domenici P, Marras S, Steffensen JF, Wilson ADM, Couillaud P & Krause J (in press). The Evolution of Lateralization in Group Hunting Sailfish. Current Biology.

Contact person:
Dr. Ralf Kurvers
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) and the Max Planck Institute for Human Development
ralf.kurvers@igb-berlin.de
+49 30 82406 472

About IGB:

www.igb-berlin.de

Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V, an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association.

Weitere Informationen:

http://www.igb-berlin.de/ IGB-Website
http://www.sciencedirect.com/science/article/pii/S0960982216315251 Paper on sailfish in Current Biology

Johannes Graupner | idw - Informationsdienst Wissenschaft

Further reports about: Freshwater Ecology IGB ecology predatory fish sailfish

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>