Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To proliferate or not to proliferate

21.03.2019

Shape of neural progenitor cells influences brain size

The brains of different mammals vary significantly in size. During human evolution, the size of the brain and the number of neurons therein increased profoundly, especially in a particular region called the neocortex, which is the seat of our higher cognitive abilities.


The picture shows a human basal progenitor with its extensions. The cell was detected upon application of a lipophilic dye, DiI (magenta), on the basal side of the human fetal neocortical tissue. Scale bar, 10 µm.

Copyright: Kalebic et al. Cell Stem Cell / MPI-CBG

Neurons are generated by neural progenitor cells, and more neural progenitors means more neurons and a bigger brain. Past studies had implicated one specific class of neural progenitors, called basal progenitors, as a key driver of neocortex expansion.

However, it remained largely unknown what underlies the ability of basal progenitors to proliferate, that is to produce more basal progenitors. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden now identified an underlying mechanism.

They found that the shape of those cells determines how much they proliferate. This suggests that cell shape is a key cell biological feature contributing to the evolutionary expansion of the neocortex. The researchers published their findings in the journal Cell Stem Cell.

Why did the human neocortex expand so profoundly during evolution? A bigger neocortex is associated with an increased number of neurons and can provide better cognitive abilities. Neurons are produced during fetal development by progenitor cells. Neocortical progenitor cells in human are more proliferative than in other mammals, which means that they divide more times, generating additional progenitors before they produce neurons.

As a consequence, the final number of neocortical neurons is increased. Among the different classes of neocortical progenitors, the so-called basal progenitors are thought to be the driving force for a bigger brain. It was already known that basal progenitors come in different shapes, with or without cell extensions, but it was unknown what the function of these extensions was and whether their number differed across mammalian species.

Researchers in the group of Wieland Huttner at the MPI-CBG sought to address this question. With the support of colleagues from the University Hospital Carl Gustav Carus in Dresden and the Max Planck Institute for Experimental Medicine in Göttingen, they compared and quantified the shape of basal progenitors in the developing neocortex of mice, ferrets, and humans. They found that human basal progenitors have more cell extensions than those of mice and ferrets. That was new to the science world.

Might that have something to do with the enhanced proliferative capacity of human basal progenitors? Nereo Kalebic, the first author of the study, explains: “First, we wanted to know why human basal progenitors have more extensions, and discovered that the protein PALMDELPHIN, which is associated with the inner side of the cell membrane, enables the growth of additional extensions.

There it was – the unknown mechanism that influences the shape of basal progenitor cells!” Nereo continues: “Secondly, we also found out that when a basal progenitor has more extensions, its ability to proliferate is increased, which ultimately results in the production of more neurons.” The researchers showed this by introducing human PALMDELPHIN into the embryonic neocortex of mice and ferrets, which caused the growth of more extensions on basal progenitors and an increase in their proliferation.

In contrast, when the expression of PALMDELPHIN was disrupted in fetal human neocortical tissue, the number of basal progenitor extensions and basal progenitor proliferation were reduced. The researchers' findings culminated in the novel concept that a greater number of cell extensions enabled basal progenitors to more effectively receive pro-proliferative signals from their environment.

This study shows for the first time that the shape of a progenitor cell causes a change in proliferation. Wieland Huttner, the supervisor of the study, summarizes: “Our findings offer a missing link between the shape of basal progenitors and their ability to proliferate and thus create a bigger pool of progenitor cells, which is required for the production of a greater number of neurons. This suggests that changes in basal progenitor cell shape may have contributed to the evolutionary expansion of the human neocortex.”

Wissenschaftliche Ansprechpartner:

Wieland Huttner
+49 (0) 351 210 1500
huttner@mpi-cbg.de

Nereo Kalebic
+49 (0) 351 210 2516
kalebic@mpi-cbg.de

Originalpublikation:

Nereo Kalebic, Carlotta Gilardi, Barbara Stepien, Michaela Wilsch-Bräuninger, Katherine
R. Long, Takashi Namba, Marta Florio, Barbara Langen, Benoit Lombardot, Anna
Shevchenko, Manfred W. Kilimann, Hiroshi Kawasaki, Pauline Wimberger, Wieland B.
Huttner: “Neocortical expansion due to increased proliferation of basal progenitors is linked to changes in their morphology” Cell Stem Cell, 21. March, 2019.

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik
Further information:
https://www.mpi-cbg.de/de/home/

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>