Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


To proliferate or not to proliferate


Shape of neural progenitor cells influences brain size

The brains of different mammals vary significantly in size. During human evolution, the size of the brain and the number of neurons therein increased profoundly, especially in a particular region called the neocortex, which is the seat of our higher cognitive abilities.

The picture shows a human basal progenitor with its extensions. The cell was detected upon application of a lipophilic dye, DiI (magenta), on the basal side of the human fetal neocortical tissue. Scale bar, 10 µm.

Copyright: Kalebic et al. Cell Stem Cell / MPI-CBG

Neurons are generated by neural progenitor cells, and more neural progenitors means more neurons and a bigger brain. Past studies had implicated one specific class of neural progenitors, called basal progenitors, as a key driver of neocortex expansion.

However, it remained largely unknown what underlies the ability of basal progenitors to proliferate, that is to produce more basal progenitors. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden now identified an underlying mechanism.

They found that the shape of those cells determines how much they proliferate. This suggests that cell shape is a key cell biological feature contributing to the evolutionary expansion of the neocortex. The researchers published their findings in the journal Cell Stem Cell.

Why did the human neocortex expand so profoundly during evolution? A bigger neocortex is associated with an increased number of neurons and can provide better cognitive abilities. Neurons are produced during fetal development by progenitor cells. Neocortical progenitor cells in human are more proliferative than in other mammals, which means that they divide more times, generating additional progenitors before they produce neurons.

As a consequence, the final number of neocortical neurons is increased. Among the different classes of neocortical progenitors, the so-called basal progenitors are thought to be the driving force for a bigger brain. It was already known that basal progenitors come in different shapes, with or without cell extensions, but it was unknown what the function of these extensions was and whether their number differed across mammalian species.

Researchers in the group of Wieland Huttner at the MPI-CBG sought to address this question. With the support of colleagues from the University Hospital Carl Gustav Carus in Dresden and the Max Planck Institute for Experimental Medicine in Göttingen, they compared and quantified the shape of basal progenitors in the developing neocortex of mice, ferrets, and humans. They found that human basal progenitors have more cell extensions than those of mice and ferrets. That was new to the science world.

Might that have something to do with the enhanced proliferative capacity of human basal progenitors? Nereo Kalebic, the first author of the study, explains: “First, we wanted to know why human basal progenitors have more extensions, and discovered that the protein PALMDELPHIN, which is associated with the inner side of the cell membrane, enables the growth of additional extensions.

There it was – the unknown mechanism that influences the shape of basal progenitor cells!” Nereo continues: “Secondly, we also found out that when a basal progenitor has more extensions, its ability to proliferate is increased, which ultimately results in the production of more neurons.” The researchers showed this by introducing human PALMDELPHIN into the embryonic neocortex of mice and ferrets, which caused the growth of more extensions on basal progenitors and an increase in their proliferation.

In contrast, when the expression of PALMDELPHIN was disrupted in fetal human neocortical tissue, the number of basal progenitor extensions and basal progenitor proliferation were reduced. The researchers' findings culminated in the novel concept that a greater number of cell extensions enabled basal progenitors to more effectively receive pro-proliferative signals from their environment.

This study shows for the first time that the shape of a progenitor cell causes a change in proliferation. Wieland Huttner, the supervisor of the study, summarizes: “Our findings offer a missing link between the shape of basal progenitors and their ability to proliferate and thus create a bigger pool of progenitor cells, which is required for the production of a greater number of neurons. This suggests that changes in basal progenitor cell shape may have contributed to the evolutionary expansion of the human neocortex.”

Wissenschaftliche Ansprechpartner:

Wieland Huttner
+49 (0) 351 210 1500

Nereo Kalebic
+49 (0) 351 210 2516


Nereo Kalebic, Carlotta Gilardi, Barbara Stepien, Michaela Wilsch-Bräuninger, Katherine
R. Long, Takashi Namba, Marta Florio, Barbara Langen, Benoit Lombardot, Anna
Shevchenko, Manfred W. Kilimann, Hiroshi Kawasaki, Pauline Wimberger, Wieland B.
Huttner: “Neocortical expansion due to increased proliferation of basal progenitors is linked to changes in their morphology” Cell Stem Cell, 21. March, 2019.

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik
Further information:

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>