Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Prevent Cancer in Butterfly Disease Patients

11.03.2016

Researchers have revealed how a rare genetic skin condition causes aggressive skin tumours

Fragile skin that blisters easily: 90 percent of the patients that suffer from the skin condition recessive dystrophic epidermolysis bullosa (RDEB) develop rapidly progressing cutaneous squamous cell carcinomas, a type of skin cancer, by the age of 55.


Cells of a cutaneous squamous cell carcinoma (green) that invade the skin. Image by: Dr. Venugopal Rao Mittapalli

80 percent of these patients will die due to metastasis within five years after the cancer has been first detected. Researchers from the University of Freiburg and the University’s Medical Center have discovered how the two diseases are connected and which molecular mechanisms underlie the aggressive behaviour of squamous cell carcinomas in RDEB patients.

Furthermore, the dermatologists and biologists found new potential targets for the development of drugs. Dr. Venugopal Rao Mittapalli, Prof. Dr. Leena Bruckner-Tuderman, Dr. Dimitra Kiritsi and Dr. Alexander Nyström from the Medical Center – University of Freiburg conducted the study in cooperation with Juniorprofessor Dr. Winfried Römer and Dr. Josef Madl from the University of Freiburg and BIOSS Centre for Biological Signalling Studies. The team published the research findings in the journal “Cancer Research”.

Epidermolysis Bullosa, also known as butterfly disease, is a genetic skin condition. The skin of patients with this disease is as fragile as the wings of a butterfly. It blisters easily in response to minor injury or friction such as rubbing or scratching. Furthermore, the patients develop chronic wounds that are not healing and their fingers and toes fuse, for example.

The condition is caused by a mutation of the gene COL7A1, which contains the blueprint for the protein collagen VII. This protein helps to bind the epidermis and the dermis, two layers of the skin, together. In RDEB patient, collagen VII is completely absent and, therefore, the skin becomes fragile.

So far, little was known about the molecular mechanisms connecting squamous cell carcinomas and RDEB. The Freiburg research team discovered that the cancer progresses rapidly in RDEB patients, because the repeated mechanical injury alters the dermis. The amount of proteins called pro-fibrotic growth factors increases, thereby increasing stiffness of the dermis. This environment helps the tumour cells to spread.

The researchers have also identified mechanisms that could be potential drug targets. For example, molecules that inhibit the growth factor TGF reduce the stiffness and the spread of the RDEB cancer cells. “The new knowledge we have gained facilitates the design of prophylactic and therapeutic measures for delaying tumour progression and extending cancer-free periods in RDEB,” says Venugopal Rao Mittapalli, the first author of the study.

Leena Bruckner-Tuderman is Director of the Department of Dermatology of the Medical Center – University of Freiburg. Dimitra Kiritsi, Venugopal Rao Mittapalli und Alexander Nyström are researchers in Bruckner-Tuderman’s group. Winfried Römer is juniorprofessor for Synthetic Biology of Signalling Processes at the Cluster of Excellence BIOSS Centre for Biological Signalling Studies and the Institute of Biology II of the University of Freiburg. Josef Madl is postdoctoral scientist in Römer’s research group.

Original publication:
Mittapalli VR, Madl J, Löffek S, Kiritsi D, Kern JS, Römer W, Nyström A, Bruckner-Tuderman L. (2016). Injury-Driven Stiffening of the Dermis Expedites Skin Carcinoma Progression. In: Cancer Res. 76(4):940-51. doi: 10.1158/0008-5472.CAN-15-1348.


Contact:
Prof. Dr. Dr. h.c. Leena Bruckner-Tuderman
Department of Dermatology
Medical Center – University of Freiburg
Phone: +49 (0)761 / 270 - 67010
E-Mail: leena.bruckner-tuderman@uniklinik-freiburg.de

Dr. Venugopal Rao Mittapalli
Department of Dermatology
Medical Center – University of Freiburg
Phone: +49 (0)761 / 270 - 67210
E-Mail: venugopal.rao.mittapalli@uniklinik-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-03-10.36-en?set_language=en

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

Ultra ultrasound to transform new tech

17.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>