Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Prevent Cancer in Butterfly Disease Patients

11.03.2016

Researchers have revealed how a rare genetic skin condition causes aggressive skin tumours

Fragile skin that blisters easily: 90 percent of the patients that suffer from the skin condition recessive dystrophic epidermolysis bullosa (RDEB) develop rapidly progressing cutaneous squamous cell carcinomas, a type of skin cancer, by the age of 55.


Cells of a cutaneous squamous cell carcinoma (green) that invade the skin. Image by: Dr. Venugopal Rao Mittapalli

80 percent of these patients will die due to metastasis within five years after the cancer has been first detected. Researchers from the University of Freiburg and the University’s Medical Center have discovered how the two diseases are connected and which molecular mechanisms underlie the aggressive behaviour of squamous cell carcinomas in RDEB patients.

Furthermore, the dermatologists and biologists found new potential targets for the development of drugs. Dr. Venugopal Rao Mittapalli, Prof. Dr. Leena Bruckner-Tuderman, Dr. Dimitra Kiritsi and Dr. Alexander Nyström from the Medical Center – University of Freiburg conducted the study in cooperation with Juniorprofessor Dr. Winfried Römer and Dr. Josef Madl from the University of Freiburg and BIOSS Centre for Biological Signalling Studies. The team published the research findings in the journal “Cancer Research”.

Epidermolysis Bullosa, also known as butterfly disease, is a genetic skin condition. The skin of patients with this disease is as fragile as the wings of a butterfly. It blisters easily in response to minor injury or friction such as rubbing or scratching. Furthermore, the patients develop chronic wounds that are not healing and their fingers and toes fuse, for example.

The condition is caused by a mutation of the gene COL7A1, which contains the blueprint for the protein collagen VII. This protein helps to bind the epidermis and the dermis, two layers of the skin, together. In RDEB patient, collagen VII is completely absent and, therefore, the skin becomes fragile.

So far, little was known about the molecular mechanisms connecting squamous cell carcinomas and RDEB. The Freiburg research team discovered that the cancer progresses rapidly in RDEB patients, because the repeated mechanical injury alters the dermis. The amount of proteins called pro-fibrotic growth factors increases, thereby increasing stiffness of the dermis. This environment helps the tumour cells to spread.

The researchers have also identified mechanisms that could be potential drug targets. For example, molecules that inhibit the growth factor TGF reduce the stiffness and the spread of the RDEB cancer cells. “The new knowledge we have gained facilitates the design of prophylactic and therapeutic measures for delaying tumour progression and extending cancer-free periods in RDEB,” says Venugopal Rao Mittapalli, the first author of the study.

Leena Bruckner-Tuderman is Director of the Department of Dermatology of the Medical Center – University of Freiburg. Dimitra Kiritsi, Venugopal Rao Mittapalli und Alexander Nyström are researchers in Bruckner-Tuderman’s group. Winfried Römer is juniorprofessor for Synthetic Biology of Signalling Processes at the Cluster of Excellence BIOSS Centre for Biological Signalling Studies and the Institute of Biology II of the University of Freiburg. Josef Madl is postdoctoral scientist in Römer’s research group.

Original publication:
Mittapalli VR, Madl J, Löffek S, Kiritsi D, Kern JS, Römer W, Nyström A, Bruckner-Tuderman L. (2016). Injury-Driven Stiffening of the Dermis Expedites Skin Carcinoma Progression. In: Cancer Res. 76(4):940-51. doi: 10.1158/0008-5472.CAN-15-1348.


Contact:
Prof. Dr. Dr. h.c. Leena Bruckner-Tuderman
Department of Dermatology
Medical Center – University of Freiburg
Phone: +49 (0)761 / 270 - 67010
E-Mail: leena.bruckner-tuderman@uniklinik-freiburg.de

Dr. Venugopal Rao Mittapalli
Department of Dermatology
Medical Center – University of Freiburg
Phone: +49 (0)761 / 270 - 67210
E-Mail: venugopal.rao.mittapalli@uniklinik-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-03-10.36-en?set_language=en

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>