Not all titanium dioxide is equal when it comes to splitting water with visible light

Researchers from the Department of Energy's Pacific Northwest National Laboratory will be presenting at this year's American Chemical Society 2009 Spring Meeting in Salt Lake City, Utah. The following talk will occur on Tuesday afternoon.

Scientists are hot on the trail of materials that use light to break down contaminants for environmental cleanup or split water for hydrogen fuel production. With a splash of UV light, titanium dioxide can do just that, but researchers would like to expand its repertoire to use visible light. Doping, or adding small amounts of another element, can change a metal oxide's characteristics. PNNL's Michael Henderson and colleagues added nitrogen to different forms of titanium dioxide known as anatase and rutile, and tested how well the nitrogen-doped metal oxides performed. The team measured how a test molecule decomposed as a stand-in for half of the water-splitting reaction — the “oxidation” half of an oxidation-reduction reaction. While both metal oxides decomposed the test molecule under UV, only anatase could break it down in visible light, surprising the researchers. Henderson will talk about properties of doped anatase and rutile that might contribute to their contrasting skills.

Reference: Michael A. Henderson, T. Ohsawa. I. Lyubinetsky, Y. Du, V. Shutthanandan, S. A. Chambers, Photochemical activities of nitrogen doped rutile and anatase surfaces, Tuesday, March 24, 2 – 5:30 pm in Marriot Downtown, Salon H.

This work was supported by the Department of Energy's Chemical Sciences Division of Basic Energy Sciences, part of the Office of Science.

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science, Biological and Environmental Research program that is located at Pacific Northwest National Laboratory. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL's technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,200 staff and has an $850 million annual budget. Ohio-based Battelle has managed PNNL since the lab's inception in 1965.

Media Contact

Mary Beckman EurekAlert!

More Information:

http://www.pnl.gov

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors