Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny but toxic: MBL researchers discover a mechanism of neurodegeneration in Alzheimer's disease

31.03.2009
Tiny, toxic protein particles severely disrupt neurotransmission and inhibit delivery of key proteins in Alzheimer's disease, two separate studies by Marine Biological Laboratory (MBL) researchers have found.

The particles are minute clumps of amyloid beta, which has long been known to accumulate and form plaques in the brain of Alzheimer's patients.

"These small particles that haven't aggregated into plaques—these are increasingly being seen as the really toxic species of amyloid beta," says Scott Brady of University of Illinois College of Medicine, who has been an MBL investigator since 1982.

Brady and his colleagues found that these particles inhibit neurons from communicating with each other and with other target cells in the body.

"The disease symptoms for Alzheimer's are associated not with the death of the neurons – that is a very late event – but with the loss of functional connections. It's when the neuron is no longer talking to its targets that you start to get the memory deficits and dementia associated with the disease," Brady says.

The amyloid beta particles activate an enzyme, CK2, which in turn disrupts the "fast axonal transport" system inside the neuron, Brady found. This transport system has motor proteins that move various kinds of cargo (including neurotransmitters and the associated protein machinery for their release) from place to place in the neuron on microtubule tracks.

Brady's findings are complemented by a new study by Rudolfo Llinás of New York University School of Medicine. Brady and Llinás both conduct neuroscience research at the MBL using the giant nerve cell of the Woods Hole squid, Loligo paeleii, as a model system.

Llinás found that activation of CK2 blocks neurotransmission at the synapse – the point where the neuron connects to its target.

"Disruptions in the fast axonal transport system are probably key elements in the pathogenesis of Alzheimer's and other adult-onset neurodegenerative diseases, such as Parkinson's and ALS," says Brady. "It doesn't mean that is the only thing going on, or that it is the triggering feature of the disease. But we do know that changes in the fast axonal transport system are sufficient to cause the 'dying back' of neurons that is characteristic of these diseases."

The new findings suggest the possibility of designing a drug to inhibit CK2 activation in Alzheimer's patients. However, a prior study by Brady found that activation of another enzyme, GSK3, in Alzheimer's also disrupts the fast axonal transport system. It may therefore be necessary to inhibit both enzymes.

"There haven't yet been any therapies designed for Alzheimer's with the idea of protecting the fast axonal transport system," says Brady. "But if there were, they would have to inhibit the activation of both CK2 and GSK3. We can't think of it as a single thing going wrong. There are several things going wrong."

Citations:

Pigino, G., et al. (2009) Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. PNAS: doi 10.1073/pnas0901229106.

Moreno, H. et al. (2009) Synaptic transmission block by presynaptic injection of oligomeric amyloid beta. PNAS: doi 10.1073/pnas09000944106.

Background information:

Lapointe, N.E., et al. (2009) The amino terminus of tau inhibits kinesin-dependent axonal transport: Implications for filament toxicity. J. Neurosci. Res. 87(2): 440-451.

The MBL is a leading international, independent, nonprofit institution dedicated to discovery and to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, the MBL is the oldest private marine laboratory in the Western Hemisphere.

Diana Kenney | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>