Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Super-Plant Can Clean Up Hog Farms and Be Used For Ethanol Production

09.04.2009
Researchers at North Carolina State University have found that a tiny aquatic plant can be used to clean up animal waste at industrial hog farms and potentially be part of the answer for the global energy crisis.

Their research shows that growing duckweed on hog wastewater can produce five to six times more starch per acre than corn, according to researcher Dr. Jay Cheng. This means that ethanol production using duckweed could be "faster and cheaper than from corn," says fellow researcher Dr. Anne-Marie Stomp.

"We can kill two birds – biofuel production and wastewater treatment – with one stone – duckweed," Cheng says. Starch from duckweed can be readily converted into ethanol using the same facilities currently used for corn, Cheng adds.

Corn is currently the primary crop used for ethanol production in the United States. However, its use has come under fire in recent years because of concerns about the amount of energy used to grow corn and commodity price disruptions resulting from competition for corn between ethanol manufacturers and the food and feed industries. Duckweed presents an attractive, non-food alternative that has the potential to produce significantly more ethanol feedstock per acre than corn; exploit existing corn-based ethanol production processes for faster scale-up; and turn pollutants into a fuel production system. The duckweed system consists of shallow ponds that can be built on land unsuitable for conventional crops, and is so efficient it generates water clean enough for re-use. The technology can utilize any nutrient-rich wastewater, from livestock production to municipal wastewater.

Large-scale hog farms manage their animal waste by storing it in large "lagoons" for biological treatment. Duckweed utilizes the nutrients in the wastewater for growth, thus capturing these nutrients and preventing their release into the environment. In other words, Cheng says, "Duckweed could be an environmentally friendly, economically viable feedstock for ethanol."

"There's a bias in agriculture that all the crops that could be discovered have been discovered," Stomp says, "but duckweed could be the first of the new, 21st century crops. In the spirit of George Washington Carver, who turned peanuts into a major crop, Jay and I are on a mission to turn duckweed into a new industrial crop, providing an innovative approach to alternative fuel production."

Cheng, a professor of biological and agricultural engineering, co-authored the research with Stomp, associate professor of forestry, and post-doctoral research associate, Mike Yablonski. The research, which is funded by the North Carolina Biofuels Center, was presented March 21 at the annual conference of the Institute of Biological Engineering in Santa Carla, Calif.

Cheng and Stomp are currently establishing a pilot-scale project to further investigate the best way to establish a large-scale system for growing duckweed on animal wastewater, and then harvesting and drying the duckweed.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Lab-free infection test could eliminate guesswork for doctors
26.02.2020 | University of Southampton

nachricht MOF co-catalyst allows selectivity of branched aldehydes of up to 90%
26.02.2020 | National Centre of Competence in Research (NCCR) MARVEL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>