Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Step Edges, Big Step for Surface Science

09.04.2014

Experiments at the Vienna University of Technology can explain the behaviour of electrons at tiny step edges on titanium oxide surfaces. This is important for solar cell technology and novel, more effective catalysts.

It can be found in toothpaste, solar cells, and it is useful for chemical catalysts: titanium dioxide (TiO2) is an extremely versatile material. Alhough it is used for so many different applications, the behaviour of titanium oxide surfaces still surprises.


Tiny step edges on titanium oxide surfaces


Jiri Pavelec, Gareth Parkinson, Benjamin Daniel, Martin Setvin (left to right)

Professor Ulrike Diebold and her team at the Vienna University of Technology managed to find out why oxygen atoms attach so well to tiny step edges at titanium oxide surfaces. Electrons accumulate precisely at these edges, allowing the oxygen atoms to connect more strongly. In solar cells, this effect should be avoided, but for catalysts this can be highly desirable.

Microscope Pictures of Titanium Oxide Surfaces

Titanium oxide is Ulrike Diebold’s favourite material. In her latest publication, she and her team studied the behaviour of titanium oxide surfaces using scanning tunnelling microscopy and atomic force microscopy.

Titanium oxide can be used for solar cells. In the so-called Graetzel cell, an inexpensive but inefficient type of solar cell, it plays the central role. “In a solar cell, we want electrons to move freely and not attach to a particular atom”, says Martin Setvin, first author of the publication, which has now appeared in the journal “Angewandte”.

The opposite is true for catalysts: For catalytic processes, it is often important that electrons attach to surface atoms. Only at places where such an additional electron is located can oxygen molecules attach to the titanium oxide surface and then take part in chemical reactions.

Electrons Distort the Crystal Structure

Usually, it takes a considerable amount of energy to have the electrons bond to a particular atom. “When an electron is localized at a titanium atom, the electric charge of the atom is changed, and due to electrostatic forces, the titanium oxide crystal is distorted”, says Ulrike Diebold. To create this lattice distortion, energy has to be invested – and therefore this effect does not usually occur by itself.

However, the surface of titanium oxide is never completely flat. On a microscopic scale, there are tiny steps and edges, many of them with a height of only one atomic layer. At these edges, electrons can localize quite easily. The atoms at the edge only have neighbours on one side, and therefore no major lattice distortions are created when these atoms receive an additional electron and change their charge state. “We have observed that oxygen molecules can connect to the surface precisely at these locations”, says Diebold.

Better Solar Cells, More Efficient Catalysts
Important conclusions for technology can be drawn from this: for photovoltaics, such step edges should be avoided, for catalysts this newly discovered effect yields great opportunities. Surfaces could be microstructured to exhibit many such edges, making them extremely effective catalysts.

Original Publication

Further Information:

Prof. Ulrike Diebold
Institute of Applied Physics
Vienna University of Technology
Wiedner Hauptstraße 8
M: +43-664-605883467
ulrike.diebold@tuwien.ac.at

Martin Setvin, PhD
Institute of Applied Physics
Vienna University of Technology
Wiedner Hauptstraße 8
T: +43-1-58801-13470
martin.setvin@tuwien.ac.at

Florian Aigner | EurekAlert!
Further information:
http://www.tuwien.ac.at/en/news/news_detail/article/8732/

Further reports about: Atoms Cells Microscope Physics Surface TiO2 Titanium crystal structure oxygen molecule titanium titanium oxide

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>