Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Silver Particles Trap Mercury

15.02.2012
Hyperstoichiometric reaction between mercury ions and silver nanoparticles

Anyone who thinks amalgams are limited to tooth fillings is missing something: Amalgams, which are alloys of mercury and other metals, have been used for over 2500 years in the production of jewelry and for the extraction of metals like silver and gold in mining operations.

These days, the inverse process is of greater interest: the removal of mercury from wastewater by amalgamation with precious metals in the form of nanoparticles. Kseniia Katok and colleagues have now reported new insights in the journal Angewandte Chemie: if the diameter of silver nanoparticles is made even smaller, significantly more mercury can be extracted relative to the amount of silver used.

In the conventional process, two silver atoms react with one mercury ion, which carries a twofold positive charge, to produce two silver ions, which go into solution, and a neutral mercury atom, which is taken up by the metallic silver particles. The stoichiometric ratio of mercury to silver is thus 1:2.

The researchers at the University of Brighton (UK) and colleagues in Kazakhstan, France and Japan have now determined that the stoichiometry of the reaction changes if the diameter of the silver nanoparticles drops below a critical 32 nm.

This effect, known as “hyperstoichiometry” depends on the size of the nanoparticles. With particles that have a diameter around 10 nm, the ratio can reach between 1.1:1 and 1.7:1, depending on the mercury counterion. In these cases, the reaction is clearly occurring differently than it does with silver particles of “normal” size. The researchers postulate that the initially produced silver ions are absorbed into the silver nanoparticles and, under the catalytic influence of the tiny silver nanoparticles, are “recycled” back to elemental silver by the negatively charged counterions of the mercury salts, which in these experiments were nitrate or acetate.

It has often been observed that very small nanoparticles have a higher catalytic activity than larger ones because their surface properties dominate over their bulk properties. The hyperstoichiometric effect suggests new approaches for the purification of runoff as well as catalysis.

To produce the necessary extremely small silver nanoparticles, the scientists equipped a silicon dioxide surface with individual silicon hydride (-SiH) groups. These are able to reduce silver ions to neutral silver atoms, which are bound to the surface and probably act as nucleation sites for the further aggregation of silver. The density of SiH groups and reaction time can be used to control the size of the particles. In contrast to conventional processes, this requires no stabilizers, which stick to the silver nanoparticles and alter their physical and chemical properties.

About the Author
Dr Kseniia Katok is a Marie Curie International Incoming Fellow at the University of Brighton (UK) hosted with the Nanoscience & Nanotechnology Group. She is particularly interested in the chemistry of silica and carbon and the development of innovative materials for applications in the environmental and biomedical sectors.
Author: Kseniia Katok, University of Brighton (UK), http://www.brighton.ac.uk/set/contact/details.php?uid=kk95

Title: Hyperstoichiometric Interaction Between Silver and Mercury at the Nanoscale

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201106776

Dr Kseniia Katok | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.brighton.ac.uk/set/contact/details.php?uid=kk95

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>