Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny nanomachine successfully completes test drive

10.04.2018

Together with colleagues from the USA, scientists from the University of Bonn and the research institute Caesar in Bonn have used nanostructures to construct a tiny machine that constitutes a rotatory motor and can move in a specific direction. The researchers used circular structures from DNA. The results will now be presented in the journal “Nature Nanotechnology”.

Nanomachines include structures of complex proteins and nucleic acids that are powered with chemical energy and can perform directed movements. The principle is known from nature: Bacteria, for example, propel themselves forward using a flagellum. The team of the University of Bonn, the research institute Caesar in Bonn and the University of Michigan (USA) used structures made of DNA nanorings. The two rings are linked like a chain.


Greatly enlarged reproduction of the nanomachine: The two rings are linked like a chain and can well be recognized. At the centre there is the T7 RNA Polymerase.

© Julián Valero/caesar Bonn


In the lab: Prof. Michael Famulok (left) and Dr. Julián Valero from the Life & Medical Sciences (LIMES)-Institute at the University of Bonn at an atomic force microscope.

© Photo: Volker Lannert/Uni Bonn

“One ring fulfills the function of a wheel, the other drives it like an engine with the help of chemical energy”, explains Prof. Dr. Michael Famulok from the Life & Medical Sciences (LIMES) Institute of the University of Bonn.

The tiny vehicle measures only about 30 nanometers (millionths of a millimeter). The “fuel” is provided by the protein “T7 RNA polymerase”. Coupled to the ring that serves as an engine, this enzyme synthesizes an RNA strand based on the DNA sequence and uses the chemical energy released during this process for the rotational movement of the DNA ring.

“As the rotation progresses, the RNA strand grows like a thread from the RNA polymerase”, reports lead author Dr. Julián Valero from Famulok's team. The researchers are using this ever-expanding RNA thread, which basically protrudes from the engine as a waste product, to keep the tiny vehicle on its course by using markings on a DNA-nanotube track.

Length of the test drive is 240 nanometers

Attached to this thread, the unicycle machine covered about 240 nanometers on its test drive. “That was a first go”, says Famulok. “The track can be extended as desired.” In the next step the researchers are not only aiming at expanding the length of the route, but also plan more complex challenges on the test track. At built-in junctions, the nanomachine should decide which way to go. “We can use our methods to predetermine which turn the machine should take”, says Valero with a view towards the future.

Of course, the scientists cannot watch the tiny vehicle at work with the naked eye. By using an atomic force microscope that scanned the surface structure of the nanomachine, the scientists were able to visualize the interlocked DNA rings.

In addition, the team used fluorescent markers to show that the “wheel” of the machine was actually turning. Fluorescent “waymarkers” along the nanotube path lit up as soon as the nano-unicycle passed them. Based thereupon, the speed of the vehicle could also be calculated: One turn of the wheel took about ten minutes. That's not very fast, but nevertheless a big step for the researchers. “Moving the nanomachine in the desired direction is not trivial”, says Famulok.

The components of the machine assemble by self-organisation

Of course, unlike macroscopic machines, the nanomachine was not assembled with a welding torch or wrench. The construction is based on the principle of self-organization. As in living cells, the desired structures arise spontaneously when the corresponding components are made available.

“It works like an imaginary puzzle”, explains Famulok. Each puzzle piece is designed to interact with very specific partners. If you bring together exactly these partners in a single vessel, each particle will find its partner and the desired structure is automatically created.

By now, scientists worldwide have developed numerous nanomachines and nanoengines. But the method developed by Famulok's team is a completely novel principle. “This is a big step: It is not easy to reliably design and realize such a thing on a nanometer scale”, says the scientist. His team wants to develop even more complex nanoengine systems soon. “This is basic research”, says Famulok.

“It is not possible to see exactly where it will lead.” With some imagination, possible applications could for instance include molecular computers that perform logical operations based on molecular movements. Additionally, tiny machines could transport drugs through the bloodstream precisely to where they are required. “But these are still visions of the future”, says Famulok.

Publication: Julián Valero, Nibedita Pal, Soma Dhakal, Nils G. Walter and Michael Famulok: A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks, Nature Nanotechnology, DOI: 10.1038/s41565-018-0109-z

Contact:

Prof. Dr. Michael Famulok
Life & Medical Sciences (LIMES)-Institute
University of Bonn
Tel. +49(0)228/731787
E-mail: m.famulok@uni-bonn.de

Captures:

Famulok_Lannert_003.JPG: In the lab: Prof. Michael Famulok (left) and Dr. Julián Valero from the Life & Medical Sciences (LIMES)-Institute at the University of Bonn at an atomic force microscope. © Photo: Volker Lannert/Uni Bonn

cover_project_18_reflejo_cat_pressrelease.jpg: Greatly enlarged reproduction of the nanomachine: The two rings are linked like a chain and can well be recognized. At the centre there is the T7 RNA Polymerase. (c) Julián Valero

Sebastian Scherrer | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New mechanisms regulating neural stem cells
21.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>