Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Cell Patterns Reveal the Progression of Development and Disease

29.06.2011
Scientists have long known that, to form tissue structures and organs, stem cells migrate and differentiate in response to the other cells, matrix, and signals in their environment. But not much is known about these developmental processes nor how to distinguish between normal and pathological behaviors.

A team of researchers at Columbia Engineering School has developed a new technique to evaluate human stem cells using cell micropatterning — a simple but powerful in vitro tool that will enable scientists to study the initiation of left-right asymmetry during tissue formation, to diagnose disease, and to study factors that could lead to certain birth defects.

The study, led by Gordana Vunjak-Novakovic, Professor of Biomedical Engineering at Columbia University’s Fu Foundation School of Engineering and Applied Science, will be published in the online Early Edition of the Proceedings of the National Academy of Sciences the week of June 27, 2011.

Vunjak-Novakovic and her team have long been interested in developing technologies to investigate developmental processes of cells. In 2008 Leo Wan, a postdoctoral scientist from her lab, printed human cells onto microscopically small patterns to investigate the shape-force control of cell function; this study helped them learn more about the connections between mechanical tension generated inside the cell and the decisions that cells make.

As they looked into the numerous videos they made to document and analyze the shapes of cells on micropatterns over time in culture, they noticed that the cell populations on micropatterns had a life of their own. These small communities of cells would undergo directional motion and form chiral alignment after a day or two of culture, with all cells moving in the same direction within the boundaries. Vunjak-Novakovic said “It was really the consistency of this motion pattern – the same cell type would always take the same direction with extremely high statistical power – that was intriguing and made us do hundreds of experiments.”

They found that the direction of motion depended on cell type — that normal cells and cancer cells of the same type show opposite direction of motion, and that the mechanism by which the directional motion is established involves the actin stress fibers inside the cell. “What’s really interesting about this work is that it shows that cells can establish a consistently biased asymmetry without the help of large-scale embryonic structures,” said Vunjak-Novakovic. “Our study clearly demonstrated that mammalian cells could establish and organize consistent asymmetry without cilia or node, a finding of great interest to those of us in cell and both developmental biology and stem cell bioengineering. The use of cell patterning techniques for studying cell asymmetry, or chirality, is entirely novel, and it enables obtaining a lot of biological and medical information by analyzing cell motion on tiny patterns.”

Vunjak-Novakovic and her team plan to extend their research in several directions, by working:

• with developmental biologists to get deeper insights into the establishment of left-right asymmetry

• with cancer biologists to evaluate the capacity of this technology to diagnose disease

• in cardiac tissue engineering to pattern signal propagation in cell populations.

“We are very excited about developing this technology that gives us insights into the small world of the cells, in a way that is predictive of their behavior in the whole organism,” added Vunjak-Novakovic. “But what’s also really striking are the images of cells on micropatterns — these are the most beautiful hybrids of art and science I have ever seen!’

Columbia has filed a patent application covering potential commercial applications of the discovery and, through its technology transfer office, Columbia Technology Ventures, is seeking partners to develop these applications.

Vunjak-Novakovic’s study was supported by the National Institutes of Health (NIH) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB), through a Tissue Engineering Resource Center grant.

Columbia Engineering
Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world’s leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society’s more vexing challenges. http://www.engineering.columbia.edu/
Columbia Technology Ventures
A leading academic and research university, Columbia University continually seeks to advance the frontiers of knowledge and to foster a campus community deeply engaged in understanding and addressing the complex global issues of our time. Columbia University's technology transfer office, Columbia Technology Ventures, manages Columbia's intellectual property portfolio and serves as the university's gateway for companies and entrepreneurs seeking novel technology solutions. Our core mission is to facilitate the transfer of inventions from academic research to outside organizations for the benefit of society on a local, national and global basis. For more information on Columbia Technology Ventures, please visit www.techventures.columbia.edu.

Holly Evarts | Newswise Science News
Further information:
http://www.columbia.edu
http://www.techventures.columbia.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>