Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tinnitus in a computer model

15.09.2008
Scientists from Berlin study how hearing loss can lead to tinnitus

Tinnitus, i.e. the perception of phantom sounds in the absence of an acoustic stimulus, can be caused by hearing loss. Under which circumstances does this occur? Which mechanisms are involved? Roland Schaette and Richard Kempter from the Bernstein Center for Computational Neuroscience and the Humboldt University in Berlin found answers to these questions using computer simulations.

Tinnitus arises in the auditory pathway of the central nervous system. In animal studies, tinnitus-like activity of neurons - so-called hyperactivity - has been found in the dorsal cochlear nucleus (DCN), the first processing stage for acoustic information in the brain. Neurons of the DCN receive input directly from the auditory nerve and react to it with neuronal discharges - one says, they "fire".

Even without any acoustic signals, however, cells of the auditory nerve and the auditory pathway are still active and fire spontaneously at a certain rate, the "spontaneous firing rate" - comparable to the background noise produced by electrical devices. Various studies suggest that hearing loss can increase the spontaneous firing rate of nerve cells in the DCN and that animals perceive this as a kind of tinnitus. In a theoretical model, Schaette and Kempter explain the link between tinnitus and hearing loss for the first time.

After hearing loss, auditory nerve fibers and neurons along the auditory pathway only react to loud sounds. For soft sounds below the increased hearing threshold, the neurons fire spontaneously. Many neurons thus show an overall reduced activity. This could trigger a mechanism called "homeostatic plasticity", which ensures that neuronal activity is neither too high nor too low. If the average activity of the neurons is too low, homeostasis enhances their sensitivity. As the scientists could show in their model, neurons then react more strongly to the activity of the auditory nerve; in particular the spontaneous firing rate increases.

Moreover, Schaette and Kempter also demonstrated in their model that this mechanism only applies to certain types of neurons - for example to type III neurons of the DCN. These neurons are primarily activated by sound. Therefore, their average activity initially drops after hearing loss and the mechanism described above is initiated: homeostasis has to counteract this loss in activity and elevate firing rates, which then also leads to an increased spontaneous firing rate.

In contrast, type IV neurons are either activated or inhibited by sound, depending on sound intensity. Hearing loss only has a minor effect on their average activity. Accordingly, these neurons are less susceptible to hyperactivity. This prediction of the Berlin scientists' model corresponds with experimental findings: In rodents type III neurons dominate in the DCN. Here, tinnitus-like hyperactivity has been observed. In contrast, such an activity has not yet been found in cats, whose DCN mainly holds type IV neurons.

"Our studies have corroborated the association between hearing loss and tinnitus, which could provide a foundation for new treatment strategies," Kempter states. "Our hope would be that a tailored exposure to acoustic signals over an appropriate frequency range could help to drive back the hyperactivity caused by hearing loss".

Original publication:
Schaette R, Kempter R: Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Europ J Neurosci 23:3124-38 (2006). doi: 10.1111/j.1460-9568.2006.04774.x

Schaette R, Kempter R: Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type. Hear Res 240:57-72 (2008). doi:10.1016/j.heares.2008.02.006

Contact:
Dr. Richard Kempter
Dr. Roland Schaette
Institute for Biology
Department of Theoretical Biology (???)
Humboldt-Universität zu Berlin
Invalidenstraße 43, 10115 Berlin
Tel: + 49 30-2093-8925 (Richard Kempter)
+ 49 30-2093-8926 (Roland Schaette)

Dr. Katrin Weigmann | idw
Further information:
http://www.bernstein-netzwerk.de
http://www.nncn.de
http://www.bccn-berlin.de

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>