Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Timing of Nerve Impulses Supports Precise Spatial Navigation

03.04.2012
As an animal navigates through its environment, the brain maps space onto time, so that the impulses of certain nerve cells tend to shift relative to an internal clock.
Researchers at the Bernstein Centers at HU Berlin and LMU Munich have now shown that this timing code can be reliably read out. Their research focuses on a recently discovered class of nerve cells that become active at specific locations, which are arranged like nodes of a hexagonal grid. In contrast to previous approaches, the researchers consider the neural activity during single runs of the animal, thereby showing that it can use the timing information contained in the neuronal discharge to control and guide its behavior.

To learn how we human beings find our way in the world, neurobiologists have long used rats and mice as model systems. Recently, “grid cells” have been discovered in rodents that actively navigate through their environment. A grid cell fires whenever the rat or mouse is at a node of an imaginary hexagonal grid overlaid on the topography of the outside world. In the past, one commonly assumed that the brain computes the animal’s spatial location from the time-course of the grid cells’ average neural activity, as the timing of individual nerve impulses was believed to be too imprecise. However, researchers at the Bernstein Centers at Humboldt-Universität zu Berlin and Ludwig-Maximilians-Universität München have now shown the opposite to be true: by taking the time sequence of nerve impulses into consideration, one can determine the animal’s position to twice the accuracy than by the number of impulses alone. The timing pattern is clearly evident already in the grid cell’s activity during a single run. “The animal can, therefore, use the precise temporal information to guide its behavior,” says neuroscientist Prof. Andreas Herz, who directed the study.

The discovery of grid cells in the laboratory of Prof. Edvard Moser (Trondheim) in 2004 has captivated many scientists. Not only do average activity patterns of these cells regularly repeat across space, producing hexagonal grids in the spatial map of firing rates, but their temporal patterns of firing are also elaborate. The rhythmic activity on a coarse scale, as measured by the local EEG, organizes and defines the fine temporal structure of the firing in single grid cells: as the animal approaches one of the imaginary nodes of the hexagonal lattice, the cell first becomes active only during the late phase of the EEG oscillation. As the animal continues to move, the nerve impulses shift in time to ever earlier phases.

Until now, this phenomenon was only observed after averaging the data over many runs of the animal, so is the phenomenon biologically relevant or just a side effect of rhythmic activity in this brain area? The new analysis by Reifenstein et al. reveals that the temporal shift in a grid cell’s impulses is not only present on single runs, but the shift is even more pronounced than in data pooled over many runs. Spatial relationships translate into temporal relationships, which can then be used by the brain to refine its representation of space; the level of average activity in grid cells, on the other hand, conveys less information. Such findings could well generalize to other areas in the brain; even if the average activity is maintained at a constant level, neurons can use the dimension of time to encode many different signals and improve the brain’s capacity to process information.

In the course of this study, the researchers reanalyzed data from previous experimental studies from the group of Prof. Moser. Following a modern trend in the neurosciences, the data from this group were made freely available on the Internet, which made further animal experiments unnecessary.

The Bernstein Centers Berlin and Munich form part of the National Bernstein Network for Computational Neuroscience (NNCN). The NNCN was founded by the BMBF with the goal to develop, network, and bundle the knowledge and expertise in the new field of computational neuroscience. The network is named in honor of the German physiologist

Trajectory (black curved line) of a rat moving in a circular environment, together with the locations where a grid cell discharged (red dots). These locations form a hexagonal grid.
© Eric Reifenstein/HU Berlin

Julius Bernstein (1835-1917).

Original Publication:
Reifenstein E T, Kempter R, Schreiber S, Stemmler M B, Herz A V M (2012): Grid Cells in Rat Entorhinal Cortex Encode Physical Space with Independent Firing Fields and Phase Precession at the Single-Trial Level. PNAS, doi: 10.1073/pnas.1109599109

For further information, please contact:
Prof. Dr. Andreas V. M. Herz
Department Biologie II
Ludwig-Maximilians-Universität München
und Bernstein Zentrum für Computational Neuroscience München
Grosshadernerstr. 2
82152 Planegg-Martinsried
Tel: 0049-89-2180-74801
email: herz@bio.lmu.de

Johannes Faber | idw
Further information:
http://www.bccn-muenchen.de/
http://www.bccn-berlin.de/

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>