Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Timing of Nerve Impulses Supports Precise Spatial Navigation

03.04.2012
As an animal navigates through its environment, the brain maps space onto time, so that the impulses of certain nerve cells tend to shift relative to an internal clock.
Researchers at the Bernstein Centers at HU Berlin and LMU Munich have now shown that this timing code can be reliably read out. Their research focuses on a recently discovered class of nerve cells that become active at specific locations, which are arranged like nodes of a hexagonal grid. In contrast to previous approaches, the researchers consider the neural activity during single runs of the animal, thereby showing that it can use the timing information contained in the neuronal discharge to control and guide its behavior.

To learn how we human beings find our way in the world, neurobiologists have long used rats and mice as model systems. Recently, “grid cells” have been discovered in rodents that actively navigate through their environment. A grid cell fires whenever the rat or mouse is at a node of an imaginary hexagonal grid overlaid on the topography of the outside world. In the past, one commonly assumed that the brain computes the animal’s spatial location from the time-course of the grid cells’ average neural activity, as the timing of individual nerve impulses was believed to be too imprecise. However, researchers at the Bernstein Centers at Humboldt-Universität zu Berlin and Ludwig-Maximilians-Universität München have now shown the opposite to be true: by taking the time sequence of nerve impulses into consideration, one can determine the animal’s position to twice the accuracy than by the number of impulses alone. The timing pattern is clearly evident already in the grid cell’s activity during a single run. “The animal can, therefore, use the precise temporal information to guide its behavior,” says neuroscientist Prof. Andreas Herz, who directed the study.

The discovery of grid cells in the laboratory of Prof. Edvard Moser (Trondheim) in 2004 has captivated many scientists. Not only do average activity patterns of these cells regularly repeat across space, producing hexagonal grids in the spatial map of firing rates, but their temporal patterns of firing are also elaborate. The rhythmic activity on a coarse scale, as measured by the local EEG, organizes and defines the fine temporal structure of the firing in single grid cells: as the animal approaches one of the imaginary nodes of the hexagonal lattice, the cell first becomes active only during the late phase of the EEG oscillation. As the animal continues to move, the nerve impulses shift in time to ever earlier phases.

Until now, this phenomenon was only observed after averaging the data over many runs of the animal, so is the phenomenon biologically relevant or just a side effect of rhythmic activity in this brain area? The new analysis by Reifenstein et al. reveals that the temporal shift in a grid cell’s impulses is not only present on single runs, but the shift is even more pronounced than in data pooled over many runs. Spatial relationships translate into temporal relationships, which can then be used by the brain to refine its representation of space; the level of average activity in grid cells, on the other hand, conveys less information. Such findings could well generalize to other areas in the brain; even if the average activity is maintained at a constant level, neurons can use the dimension of time to encode many different signals and improve the brain’s capacity to process information.

In the course of this study, the researchers reanalyzed data from previous experimental studies from the group of Prof. Moser. Following a modern trend in the neurosciences, the data from this group were made freely available on the Internet, which made further animal experiments unnecessary.

The Bernstein Centers Berlin and Munich form part of the National Bernstein Network for Computational Neuroscience (NNCN). The NNCN was founded by the BMBF with the goal to develop, network, and bundle the knowledge and expertise in the new field of computational neuroscience. The network is named in honor of the German physiologist

Trajectory (black curved line) of a rat moving in a circular environment, together with the locations where a grid cell discharged (red dots). These locations form a hexagonal grid.
© Eric Reifenstein/HU Berlin

Julius Bernstein (1835-1917).

Original Publication:
Reifenstein E T, Kempter R, Schreiber S, Stemmler M B, Herz A V M (2012): Grid Cells in Rat Entorhinal Cortex Encode Physical Space with Independent Firing Fields and Phase Precession at the Single-Trial Level. PNAS, doi: 10.1073/pnas.1109599109

For further information, please contact:
Prof. Dr. Andreas V. M. Herz
Department Biologie II
Ludwig-Maximilians-Universität München
und Bernstein Zentrum für Computational Neuroscience München
Grosshadernerstr. 2
82152 Planegg-Martinsried
Tel: 0049-89-2180-74801
email: herz@bio.lmu.de

Johannes Faber | idw
Further information:
http://www.bccn-muenchen.de/
http://www.bccn-berlin.de/

More articles from Life Sciences:

nachricht When predictions of theoretical chemists become reality
22.05.2020 | Technische Universität Dresden

nachricht From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there
20.05.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>