Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Threaded through a Pore - Single-molecule detection of hydroxymethylcytosine in DNA

24.04.2013
Changes in the bases that make up DNA act as markers, telling a cell which genes it should read and which it shouldn’t.

In the journal Angewandte Chemie, a British team has now introduced a new method that makes it possible to enrich the rare gene segments that contain the modified base hydroxymethylcytosine and to identify individual hydroxymethylcytosine molecules in DNA. Such modifications are associated with autoimmune diseases and cancer.



The bases adenine, guanine, cytosine, and thymine make up the genetic code. Every cell of the body contains an identical set of complete genetic material. However, the various tissues in the body are very different from each other.

This is because the cells have the ability to transcribe only a specific selection of genes into proteins, leaving other genes unused. Epigenetic factors such as “markers” on the DNA control this process.

The base cytosine can be equipped with different side groups, such as a methyl or hydroxymethyl group. Dense methylation of regulatory gene segments switches off the corresponding genes. During development of the embryo, methylation patterns initiate cell differentiation.

Changes in the methylation patterns are associated with autoimmune diseases and cancer. Hydroxymethylcytosine patterns also seem to play a role in the differentiation of embryonic stem cells as well as in gene expression in cells of the central nervous system.

Sequencing techniques that can be used to specifically detect epigenetic bases are thus very important. To date, the identification of hydroxymethylcytosine has required complex, expensive, or error-prone processes. A team led by Hagan Bayley at the University of Oxford University has now developed a chemical modification that allows for the differentiation of hydroxymethylcytosine and methylcytosine through sequencing in nanopores.

Developed by Oxford Nanopore, a company formed by Hagan Bayley in 2005, the nanopore method is a highly promising alternative to the sequencing of individual DNA molecules without an amplification step. Fed by an enzyme, a single strand of DNA threads through a membrane-embedded protein pore.

Depending on which of the bases is in the narrowest part of the pore at a given time, there is a characteristic change in the flow of current through the pore.

A chemical reaction between hydroxymethylcytosine, bisulfite, and a cysteine-containing peptide that leaves the other bases—including methylcytosine—unchanged, greatly improves the resolution as the various bases result in differences in current.

Importantly, it is possible to attach a fluorescent marker to the modified site, or a molecular “eye” that can be used to attach the rare hydroxymethylcytosine-containing DNA fragments to “hooks” that allow the fragments to be enriched over unmodified fragments, enabling rapid sequence analysis.

About the Author
Hagan Bayley is the Professor of Chemical Biology at the University of Oxford, and the founder of Oxford Nanopore Technologies. He was recognized by the RSC as Chemistry World Entrepreneur of the Year in 2009 and was the society's Interdisciplinary Prize winner in 2012. He is a Fellow of the Royal Society.

Author: Hagan Bayley, University of Oxford (UK), http://bayley.chem.ox.ac.uk/hbayley/

Title: Single-Molecule Detection of 5-Hydroxymethylcytosine in DNA through Chemical Modification and Nanopore Analysis

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201300413

Hagan Bayley | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://bayley.chem.ox.ac.uk/hbayley/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>