Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sweetest Calculator in the World

20.06.2014

Chemists of Jena University let fluorescent sugar sensors ‘calculate’

In a chemistry lab at the Friedrich Schiller University Jena (Germany): Prof. Dr. Alexander Schiller works at a rectangular plastic board with 384 small wells. The chemist carefully pipets some drops of sugar solution into a row of the tiny reaction vessels.


Chemist Martin Elstner and his colleagues of Jena University use sugar molecules for information processing.

photo: Jan-Peter Kasper/FSU

As soon as the fluid has mixed with the contents of the vessels, fluorescence starts in some of the wells. What the Junior Professor for Photonic Materials does here – with his own hands – could also be called in a very simplified way, the ‘sweetest computer in the world’. The reason: the sugar molecules Schiller uses are part of a chemical sequence for information processing.

The chemist of Jena University and his two postgraduate students, Martin Elstner and Jörg Axthelm recently described in the new edition of the science journal ’Angewandte Chemie International Edition’ how they developed a molecular computer on the basis of sugar (DOI: 10.1002/anie.201403769).

“The binary logic which makes a conventional computer chip work is based on simple yes/no-decisions,” Professor Schiller explains. “There is either electricity flowing between both poles of an electric conductor or there isn’t.” These potential differences are being coded as “0“ and “1“ and can be linked via logic gates – the Boolean operators like AND, OR, NOT. In this way, a number of different starting signals and complex circuits are possible.

These logic links however can also be realized with the help of chemical substances, as the Jena chemists were able to show. For their ‘sugar computer’ they use several components: One fluorescent dye and a so-called fluorescence quencher. “If there are both components involved, the colorant can’t display its impact and we don’t see a fluorescence signal," Schiller says.

But if sugar molecules are involved, the fluorescence quencher reacts with the sugar and thus loses its capability to suppress the fluorescence signal, which makes the dye fluorescent. Depending on whether the dye, the fluorescence quencher and the sugar are on hand to give the signal, a fluorescent signal results – “1” – or no signal – “0”.

“We link chemical reactions with computer algorithms in our system in order to process complex information,” Martin Elstner explains. “If a fluorescence signal is registered, the algorithm determines what goes into the reaction vessel next.” In this way signals are not translated and processed in a current flow, like in a computer but in a flow of matter.

That their chemical processing platform works, Schiller and his staff demonstrated in the current study with the sample calculation 10 + 15. “It took our sugar computer about 40 minutes, but the result was correct,“ Prof. Schiller says smiling, and clarifies:

“It is not our aim to develop a chemical competition to established computer chips.” The chemist rather sees the field of application in medical diagnostics. So it is for instance conceivable to connect the chemical analysis of several parameters of blood and urine samples via the molecular logic platform for a final diagnosis and thus enable decisions for therapies.

Original Publication:
Elstner M, Axthelm J, Schiller A. „Sugar-based molecular computing via material implication”, Angewandte Chemie, International Edition 2014, DOI: 10.1002/anie.201403769; German version: Elstner M, Axthelm J, Schiller A. „Zucker-basierter molekularer Rechner mit Implikationslogik”, Angewandte Chemie 2014, DOI: 10.1002/ange.201403769.

Contact:
Prof. Dr. Alexander Schiller
Institute for Inorganic and Analytical Chemistry
Friedrich Schiller University Jena
Humboldtstraße 8, 07743 Jena
Phone: ++49 3641 948113
Email: alexander.schiller[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: Calculator algorithm chemist decisions fluorescence fluorescent processing sugar

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>