Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sweetest Calculator in the World

20.06.2014

Chemists of Jena University let fluorescent sugar sensors ‘calculate’

In a chemistry lab at the Friedrich Schiller University Jena (Germany): Prof. Dr. Alexander Schiller works at a rectangular plastic board with 384 small wells. The chemist carefully pipets some drops of sugar solution into a row of the tiny reaction vessels.


Chemist Martin Elstner and his colleagues of Jena University use sugar molecules for information processing.

photo: Jan-Peter Kasper/FSU

As soon as the fluid has mixed with the contents of the vessels, fluorescence starts in some of the wells. What the Junior Professor for Photonic Materials does here – with his own hands – could also be called in a very simplified way, the ‘sweetest computer in the world’. The reason: the sugar molecules Schiller uses are part of a chemical sequence for information processing.

The chemist of Jena University and his two postgraduate students, Martin Elstner and Jörg Axthelm recently described in the new edition of the science journal ’Angewandte Chemie International Edition’ how they developed a molecular computer on the basis of sugar (DOI: 10.1002/anie.201403769).

“The binary logic which makes a conventional computer chip work is based on simple yes/no-decisions,” Professor Schiller explains. “There is either electricity flowing between both poles of an electric conductor or there isn’t.” These potential differences are being coded as “0“ and “1“ and can be linked via logic gates – the Boolean operators like AND, OR, NOT. In this way, a number of different starting signals and complex circuits are possible.

These logic links however can also be realized with the help of chemical substances, as the Jena chemists were able to show. For their ‘sugar computer’ they use several components: One fluorescent dye and a so-called fluorescence quencher. “If there are both components involved, the colorant can’t display its impact and we don’t see a fluorescence signal," Schiller says.

But if sugar molecules are involved, the fluorescence quencher reacts with the sugar and thus loses its capability to suppress the fluorescence signal, which makes the dye fluorescent. Depending on whether the dye, the fluorescence quencher and the sugar are on hand to give the signal, a fluorescent signal results – “1” – or no signal – “0”.

“We link chemical reactions with computer algorithms in our system in order to process complex information,” Martin Elstner explains. “If a fluorescence signal is registered, the algorithm determines what goes into the reaction vessel next.” In this way signals are not translated and processed in a current flow, like in a computer but in a flow of matter.

That their chemical processing platform works, Schiller and his staff demonstrated in the current study with the sample calculation 10 + 15. “It took our sugar computer about 40 minutes, but the result was correct,“ Prof. Schiller says smiling, and clarifies:

“It is not our aim to develop a chemical competition to established computer chips.” The chemist rather sees the field of application in medical diagnostics. So it is for instance conceivable to connect the chemical analysis of several parameters of blood and urine samples via the molecular logic platform for a final diagnosis and thus enable decisions for therapies.

Original Publication:
Elstner M, Axthelm J, Schiller A. „Sugar-based molecular computing via material implication”, Angewandte Chemie, International Edition 2014, DOI: 10.1002/anie.201403769; German version: Elstner M, Axthelm J, Schiller A. „Zucker-basierter molekularer Rechner mit Implikationslogik”, Angewandte Chemie 2014, DOI: 10.1002/ange.201403769.

Contact:
Prof. Dr. Alexander Schiller
Institute for Inorganic and Analytical Chemistry
Friedrich Schiller University Jena
Humboldtstraße 8, 07743 Jena
Phone: ++49 3641 948113
Email: alexander.schiller[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: Calculator algorithm chemist decisions fluorescence fluorescent processing sugar

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>