Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!

30.09.2016

Could we get rid of mosquitoes without polluting the environment? Yes, we can! The BinAB toxin, produced in crystal form by a bacterium, specifically kills the larvae of Culex and Anopheles mosquitoes, but it is inactive on tiger mosquitoes (or Aedes), the vectors for dengue fever and chikungunya. Knowledge of the molecular structure of BinAB is necessary if we are to broaden its spectrum of action. Having long been inaccessible, this structure is now being published on 28 September 2016 in Nature by an international consortium involving scientists from the Institut de Biologie Structurale (CNRS/CEA/Université Grenoble Alpes) in France, and UCLA, UCR and SLAC in the USA.

Mosquitoes are vectors for numerous devastating diseases, including malaria that is spread by Anopheles mosquitoes, and filariasis transmitted by Culex mosquitoes. The BinAB toxin, produced in the form of nanocrystals by the bacterium Bacillus sphaericus, specifically targets the larvae of these two groups of mosquitoes.


These crystals observed by electronic scanning microscopy (left) made it possible to elucidate the structure of the BinAB toxin (right). © Mari Gingery (left) / Jacques-Philippe Colletier (right).

A complex, five-step intoxication process (see insert, below) explains the environmental safety of BinAB, which is harmless to other insects, crustaceans and humans. BinAB is therefore used in many countries to regulate mosquito populations. 

Unfortunately, the strength of BinAB is also its weakness: the toxin is ineffective on the larvae of Aedes mosquitoes, which spread the viruses for Dengue, Zika and chikungunya. A remodeling of BinAB might allow a broadening of its spectrum, but to achieve this it is necessary to understand its structure.

X-ray crystallography is an excellent method to reveal the structure of a protein, but it is generally only applicable to large crystals measuring around a tenth of a millimeter. Yet, the nanocrystals of BinAB that develop in vivo only measure ten-thousandths of a millimeter, and once dissolved, the toxin does not recrystallize.

An international consortium of scientists led by Jacques-Philippe Colletier, CNRS scientist at the Institut de Biologie Structurale (CNRS/CEA/Université Grenoble Alpes), Brian Federici, Professor at the University of California, Riverside (UCR) and David Eisenberg, Professor at the University of California, Los Angeles (UCLA), has just published this structure, solved by working on natural nanocrystals.

Faced with the obstacle of the small size of these crystals, they employed a new type of X-ray source, a free-electron laser, delivering ultra-short but highly intense X-ray pulses. Because nothing was known of the structure of BinAB, a purely experimental approach for structure determination (de novo phasing) was required, which had previously only been applied to samples of known structures in order to demonstrate its feasibility.

Thus the structure of BinAB is not only the first to have been solved from such small crystals (~ 300 nm) but also the first unknown structure to have been revealed de novo using a free-electron laser. This raises hopes of solving structures from smaller and more complex natural assemblages, such as organelles, the constituents of cells.

More immediately, understanding the structure of BinAB opens the way towards broadening its spectrum of action, with the aim to develop a “three-in-one” toxin that can target the larvae of three types of mosquito: Aedes (in order notably to control the spread of Zika virus), Culex (the vector for filariasis) and Anopheles (the vector for malaria).

The functioning of BinAB for the regulation of mosquito populations

The BinAB toxin is produced in the form of nanocrystals by Bacillus sphaericus bacteria at sporulation, or in other words when its nutrient resources diminish. Possibly attracted by the crystal, the mosquito larva eats the spore. The crystal dissolves in the larval gut where the pH is very high, releasing the BinAB toxin in a soluble form. BinAB is a binary toxin comprising two proteins, one of which specifically targets a receptor on the surface of intestinal cells (BinB), while the other serves exclusively to kill the cells (BinA). After dissolution of the crystal, BinA remains associated with BinB and the two partners are activated by the (enzymatic) digestion of their extremities (propeptides). BinB then binds to its receptor and assists the internalization of BinA – an essential step so that it can trigger the formation of a pore and thus kill the cell from the inside. What is the trophy for the bacterium? A larder where it can reproduce and survive.

http://www.nature.com/nature/journal/vaop/ncurrent/full/nature19825.html

  • Full bibliographic informationDe novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Jacques-Philippe Colletier, Michael R. Sawaya, Mari Gingery, Jose A. Rodriguez, Duilio Cascio, Aaron S. Brewster, Tara Michels-Clark, Robert H. Hice, Nicolas Coquelle, Sébastien Boutet, Garth J. Williams, Marc Messerschmidt, Daniel P. DePonte, Raymond G. Sierra, Hartawan Laksmono, Jason E. Koglin, Mark S. Hunter, Hyun-Woo Park, Monarin Uervirojnangkoorn, Dennis K. Bideshi, Axel T. Brunger, Brian A. Federici, Nicholas K. Sauter, David S. Eisenberg. Nature, 28 septembre 2016. DOI: 10.1038/nature19825

Notes for editors

CNRS scientist l Jacques-Philippe Colletier l T +33 (0)4 57 42 85 15 l jacques-philippe.colletier@ibs.fr
CNRS press l Véronique Etienne l T +33 (0)1 44 96 51 51 l presse@cnrs.fr

Véronique Etienne | AlphaGalileo

Further reports about: CNRS Culex Nanocrystals X-ray malaria mosquito populations mosquitoes structure

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>