Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!

30.09.2016

Could we get rid of mosquitoes without polluting the environment? Yes, we can! The BinAB toxin, produced in crystal form by a bacterium, specifically kills the larvae of Culex and Anopheles mosquitoes, but it is inactive on tiger mosquitoes (or Aedes), the vectors for dengue fever and chikungunya. Knowledge of the molecular structure of BinAB is necessary if we are to broaden its spectrum of action. Having long been inaccessible, this structure is now being published on 28 September 2016 in Nature by an international consortium involving scientists from the Institut de Biologie Structurale (CNRS/CEA/Université Grenoble Alpes) in France, and UCLA, UCR and SLAC in the USA.

Mosquitoes are vectors for numerous devastating diseases, including malaria that is spread by Anopheles mosquitoes, and filariasis transmitted by Culex mosquitoes. The BinAB toxin, produced in the form of nanocrystals by the bacterium Bacillus sphaericus, specifically targets the larvae of these two groups of mosquitoes.


These crystals observed by electronic scanning microscopy (left) made it possible to elucidate the structure of the BinAB toxin (right). © Mari Gingery (left) / Jacques-Philippe Colletier (right).

A complex, five-step intoxication process (see insert, below) explains the environmental safety of BinAB, which is harmless to other insects, crustaceans and humans. BinAB is therefore used in many countries to regulate mosquito populations. 

Unfortunately, the strength of BinAB is also its weakness: the toxin is ineffective on the larvae of Aedes mosquitoes, which spread the viruses for Dengue, Zika and chikungunya. A remodeling of BinAB might allow a broadening of its spectrum, but to achieve this it is necessary to understand its structure.

X-ray crystallography is an excellent method to reveal the structure of a protein, but it is generally only applicable to large crystals measuring around a tenth of a millimeter. Yet, the nanocrystals of BinAB that develop in vivo only measure ten-thousandths of a millimeter, and once dissolved, the toxin does not recrystallize.

An international consortium of scientists led by Jacques-Philippe Colletier, CNRS scientist at the Institut de Biologie Structurale (CNRS/CEA/Université Grenoble Alpes), Brian Federici, Professor at the University of California, Riverside (UCR) and David Eisenberg, Professor at the University of California, Los Angeles (UCLA), has just published this structure, solved by working on natural nanocrystals.

Faced with the obstacle of the small size of these crystals, they employed a new type of X-ray source, a free-electron laser, delivering ultra-short but highly intense X-ray pulses. Because nothing was known of the structure of BinAB, a purely experimental approach for structure determination (de novo phasing) was required, which had previously only been applied to samples of known structures in order to demonstrate its feasibility.

Thus the structure of BinAB is not only the first to have been solved from such small crystals (~ 300 nm) but also the first unknown structure to have been revealed de novo using a free-electron laser. This raises hopes of solving structures from smaller and more complex natural assemblages, such as organelles, the constituents of cells.

More immediately, understanding the structure of BinAB opens the way towards broadening its spectrum of action, with the aim to develop a “three-in-one” toxin that can target the larvae of three types of mosquito: Aedes (in order notably to control the spread of Zika virus), Culex (the vector for filariasis) and Anopheles (the vector for malaria).

The functioning of BinAB for the regulation of mosquito populations

The BinAB toxin is produced in the form of nanocrystals by Bacillus sphaericus bacteria at sporulation, or in other words when its nutrient resources diminish. Possibly attracted by the crystal, the mosquito larva eats the spore. The crystal dissolves in the larval gut where the pH is very high, releasing the BinAB toxin in a soluble form. BinAB is a binary toxin comprising two proteins, one of which specifically targets a receptor on the surface of intestinal cells (BinB), while the other serves exclusively to kill the cells (BinA). After dissolution of the crystal, BinA remains associated with BinB and the two partners are activated by the (enzymatic) digestion of their extremities (propeptides). BinB then binds to its receptor and assists the internalization of BinA – an essential step so that it can trigger the formation of a pore and thus kill the cell from the inside. What is the trophy for the bacterium? A larder where it can reproduce and survive.

http://www.nature.com/nature/journal/vaop/ncurrent/full/nature19825.html

  • Full bibliographic informationDe novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Jacques-Philippe Colletier, Michael R. Sawaya, Mari Gingery, Jose A. Rodriguez, Duilio Cascio, Aaron S. Brewster, Tara Michels-Clark, Robert H. Hice, Nicolas Coquelle, Sébastien Boutet, Garth J. Williams, Marc Messerschmidt, Daniel P. DePonte, Raymond G. Sierra, Hartawan Laksmono, Jason E. Koglin, Mark S. Hunter, Hyun-Woo Park, Monarin Uervirojnangkoorn, Dennis K. Bideshi, Axel T. Brunger, Brian A. Federici, Nicholas K. Sauter, David S. Eisenberg. Nature, 28 septembre 2016. DOI: 10.1038/nature19825

Notes for editors

CNRS scientist l Jacques-Philippe Colletier l T +33 (0)4 57 42 85 15 l jacques-philippe.colletier@ibs.fr
CNRS press l Véronique Etienne l T +33 (0)1 44 96 51 51 l presse@cnrs.fr

Véronique Etienne | AlphaGalileo

Further reports about: CNRS Culex Nanocrystals X-ray malaria mosquito populations mosquitoes structure

More articles from Life Sciences:

nachricht Measurement of thoughts during knowledge acquisition
25.03.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Important Progress in the Fight against Testicular Cancer
25.03.2019 | Universität Bremen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Important Progress in the Fight against Testicular Cancer

25.03.2019 | Life Sciences

Measurement of thoughts during knowledge acquisition

25.03.2019 | Life Sciences

Eliminating hepatitis C viruses effectively

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>