Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The smallest motor in the world


A research team from Empa and EPFL has developed a molecular motor which consists of only 16 atoms and rotates reliably in one direction. It could allow energy harvesting at the atomic level. The special feature of the motor is that it moves exactly at the boundary between classical motion and quantum tunneling - and has revealed puzzling phenomena to researchers in the quantum realm.

The smallest motor in the world - consisting of just 16 atoms: this was developed by a team of researchers from Empa and EPFL. "This brings us close to the ultimate size limit for molecular motors," explains Oliver Gröning, head of the Functional Surfaces Research Group at Empa. The motor measures less than one nanometer - in other words it is around 100,000 times smaller than the diameter of a human hair.

Scanning Tunneling Microscopy image (magnification about 50-million) of a PdGa surface with six dumbbell shaped acetylene-rotor molecules in different rotation states.

Image: Empa

A motor cosisting of only 16 atoms: Atomic scale structure of the single 4-atom acetylene-rotor molecule (grey-white spheres) on the chiral (i.e. having handedness) PdGa surface (blue spheres -> Palladium, red spheres -> Gallium).

Image: Empa

In principle, a molecular machine functions in a similar way to its counterpart in the macro world: it converts energy into a directed movement. Such molecular motors also exist in nature - for example in the form of myosins.

Myosins are motor proteins that play an important role in living organisms in the contraction of muscles and the transport of other molecules between cells.

Energy harvesting on the nanoscale

Like a large-scale motor, the 16 atom motor consists of a stator and a rotor, i.e. a fixed and a moving part. The rotor rotates on the surface of the stator (see picture). It can take up six different positions. "For a motor to actually do useful work, it is essential that the stator allows the rotor to move in only one direction," explains Gröning.

Since the energy that drives the motor can come from a random direction, the motor itself must determine the direction of rotation using a ratcheting scheme. However, the atom motor operates opposite of what happens with a ratchet in the macroscopic world with its asymmetrically serrated gear wheel:

While the pawl on a ratchet moves up the flat edge and locks in the direction of the steep edge, the atomic variant requires less energy to move up the steep edge of the gear wheel than it does at the flat edge. The movement in the usual 'blocking direction' is therefore preferred and the movement in 'running direction' much less likely. So the movement is virtually only possible in one direction.

The researchers have implemented this "reverse" ratchet principle in a minimal variant by using a stator with a basically triangular structure consisting of six palladium and six gallium atoms. The trick here is that this structure is rotationally symmetrical, but not mirror-symmetrical.

As a result, the rotor (a symmetrical acetylene molecule) consisting of only four atoms can rotate continuously, although the clockwise and counterclockwise rotation must be different. "The motor therefore has 99% directional stability, which distinguishes it from other similar molecular motors," says Gröning. In this way, the molecular motor opens up a way for energy harvesting at the atomic level.

Energy from two sources

The tiny motor can be powered by both thermal and electrical energy. The thermal energy provokes that the directional rotary motion of the motor changes into rotations in random directions - at room temperature, for example, the rotor rotates back and forth completely randomly at several million revolutions per second.

In contrast, electrical energy generated by an electron scanning microscope, from the tip of which a small current flows into the motors, can cause directional rotations. The energy of a single electron is sufficient to make the rotors continue to rotate by just a sixth of a revolution.

The higher the amount of energy supplied, the higher the frequency of movement - but at the same time, the more likely the rotor is to move in a random direction, since too much energy can overcome the pawl in the "wrong" direction.

According to the laws of classical physics, there is a minimum amount of energy required to set the rotor in motion against the resistance of the chute; if the supplied electrical or thermal energy is not sufficient, the rotor would have to stop. Surprisingly, the researchers were able to observe an independently constant rotation frequency in one direction even below this limit - at temperatures below 17 Kelvin (-256° Celsius) or an applied voltage of less than 30 millivolts.

From classical physics to the quantum world

At this point we are at the transition from classical physics to a more puzzling field: quantum physics. According to its rules, particles can "tunnel" - that is, the rotor can overcome the chute even if its kinetic energy is insufficient in the classical sense. This tunnel motion normally occurs without any loss of energy. Theoretically, therefore, both directions of rotation should be equally likely in this area. But surprisingly, the motor still turns in the same direction with 99% probability.

"The second law of thermodynamics states that entropy in a closed system can never decrease. In other words: if no energy is lost in the tunneling event, the direction of the motor should be purely random. The fact that the motor still rotates almost exclusively in one direction therefore indicates that energy is also lost during tunnel movement," says Gröning.

Which way is time running?

If we open the scope a little more: When we watch a video, we can usually tell clearly whether time is running forward or backward in the video. If we watch a tennis ball, for example, which jumps a little higher after each impact on the ground, we intuitively know that the video runs backwards. This is because experience teaches us that the ball loses some energy with each impact and should therefore bounce back less high.

If we now think of an ideal system in which neither energy is added nor lost, it becomes impossible to determine in which direction time is running. Such a system could be an "ideal" tennis ball that bounces back at exactly the same height after each impact. So, it would be impossible to determine whether we are watching a video of this ideal ball forward or backward - both directions are equally plausible. If the energy remains in one system, we would no longer be able to determine the direction of time.

But this principle can also be reversed: If we observe a process in a system that makes it clear in which direction time is running, the system must lose energy or, more precisely, dissipate energy - for example through friction.

Back to our mini-motor: It is usually assumed that no friction is generated during tunneling. At the same time, however, no energy is supplied to the system. So how can it be that the rotor always turns in the same direction? The second law of thermodynamics does not allow any exceptions - the only explanation is that there is a loss of energy during tunneling, even if it is extremely small. Gröning and his team have therefore not only developed a toy for molecular craftsmen.

"The motor could enable us to study the processes and reasons for energy dissipation in quantum tunneling processes," says the Empa researcher.

Wissenschaftliche Ansprechpartner:

Dr. Oliver Gröning
Empa, nanotech@surfaces
Phone +41 58 765 46 69


S Stolz, O Gröning, J Prinz, H Brune, R Widmer: Molecular motor crossing the frontier of classical to quantum tunneling motion; Proceedings of the National Academy of Sciences (2020); doi: 10.1073/pnas.1918654117

Weitere Informationen:

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Life Sciences:

nachricht Did nerve cells evolve to talk to microbes?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Study reveals how bacteria build essential carbon-fixing machinery
09.07.2020 | University of Liverpool

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

Road access for all would be costly, but not so much for the climate

10.07.2020 | Ecology, The Environment and Conservation

First COVID-19 Patient in Germany successfully treated with novel Diaphragm Therapy

10.07.2020 | Medical Engineering

Porous graphene ribbons doped with nitrogen for electronics and quantum computing

09.07.2020 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>