Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret sulfate code that lets the bad Tau in

16.07.2018

Vampires can turn humans into vampires, but to enter a human's house, they must be invited in. Researchers at the UT Southwestern Medical Center, writing in the Journal of Biological Chemistry, have uncovered details of how cells invite inside corrupted proteins that can turn normal proteins corrupt, leading to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Understanding the molecular details of how these proteins spread from cell to cell could lead to therapies to halt disease progression.

Alzheimer's and Parkinson's are associated with particular proteins in the brain misfolding, aggregating, and inducing normal proteins to misfold and aggregate. Marc Diamond's group at UT Southwestern discovered in 2013 that to enter new cells and propagate misfolding, the disease-associated proteins tau, alpha-synuclein and amyloid-beta must bind to a type of sugar-protein molecule called heparan sulfate proteoglycan (HSPG) on the cell's surface. This binding triggers the cell to bring the corrupted protein inside. In the new study, the group sought to understand more about how this process worked.


The figure shows that cellular tau fibril uptake requires 6-O-sulfation and N-sulfation of the HSPG side chains: The cell in the lower half expresses HSPGs with all the sulfate moieties and internalizes tau via macropinocytosis. The cell in the upper half is genetically modified and lacks N-sulfation (red circles) and 6-O-sulfation (yellow circles) and thus, tau fibril uptake is inhibited.

Credit: Sandi Jo Estill-Terpack, Barbara Stopschinsky

"The question was, how specific is this (process)? Or is it not specific at all?" asked Barbara Stopschinski, the physician and researcher in Diamond's lab who oversaw the new work. What were the details of the chemical communication between HSPG and tau that triggered tau's entry into the cells? And was this process different for alpha-synuclein (associated with Parkinson's disease), amyloid-beta and tau (both associated with Alzheimer's disease)?

HSPGs can be of different sizes and structures; they can be decorated with different patterns of sugars, and the sugars can themselves contain different patterns of sulfur-containing groups (sulfate moieties). Stopschinski systematically tested how different patterns of sulfate moieties affected the binding and uptake into cells of alpha-synuclein, amyloid-beta and tau.

She found that misfolded tau could enter cells through only a very specifically decorated and modified HSPG. Amyloid-beta and alpha-synuclein, on the other hand, were more flexible in the kinds of sulfate moieties that triggered their uptake. Furthermore, Stopschinski identified the enzymes in the cells that created particular sulfation patterns in HSPGs. When these enzymes were removed, misfolded tau was no longer taken up into cells, presumably because HSPG sugar decorations and sulfation patterns changed, meaning misfolded tau no longer knew the molecular password.

The team now wants to understand whether these processes work the same way in the brain as they do in cultures of brain cells. Diamond hopes that understanding how corrupted proteins move between brain cells will lead to ways of stopping them.

"There's something very remarkable about how efficiently a cell will take up these aggregates, bring them inside and use them to make more," Diamond said. "This knowledge has important implications for our understanding how neurodegenerative diseases get worse over time. Because we have identified specific enzymes that can be inhibited to block this process, this could lead to new therapies."

###

The study was funded by the National Institutes of Health, RWTH Aachen University, the Carl and Florence E. King Foundation, Washington University St. Louis, University of Texas Southwestern, the Rainwater Charitable Foundation and the Cure Alzheimer's Fund.

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research "motivated by biology, enabled by chemistry" across all areas of biochemistry and molecular biology. The read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit http://www.asbmb.org.

Sasha Mushegian | EurekAlert!
Further information:
http://dx.doi.org/10.1074/jbc.RA117.000378

Further reports about: Biochemistry Biology Molecular Biology brain cells enzymes proteins sulfate

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>