Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The rubber hand that you feel is yours

26.09.2014

What does the brain do when it receives information from they eye that conflicts with sensory evidence from the hand? Neurologists from Würzburg have investigated this question by means of a classical experiment. The result: The brain takes the easy route.

It seems rather weird: You see an artificial hand lying on a table in front of you knowing exactly it isn't your real hand. Nevertheless, you feel as though it actually belongs to your body. Your brain delivers the illusion that the artificial hand is a part of your body – even though you know for a fact that it is not.

The rubber hand illusion

This is the term used in literature to refer to the experiment. In 1998, Matthew Botvinick and Jonathan Cohen, two psychiatrists from the University of Pittsburgh, carried out the experiment for the first time, causing quite a stir with their results.

Usually, the experiment is conducted as follows: Participants place their right hand on a table. The scientists hide the hand from view and place a realistically looking rubber hand next to it. They then use a brush to simultaneously stroke the (hidden) real hand and the (visible) artificial hand. After a short time, most participants have the illusion that the rubber hand is a part of their body.

Publication in the Journal of Cognitive Neuroscience

To find out what is happening in the participants' brains and which parts of the brain are involved in generating the illusion, scientists of the University of Würzburg teamed up with their colleagues in Leipzig and London. Their work will soon be published in the Journal of Cognitive Neuroscience; the online version is already available.

"We studied how the brain processes and resolves conflicting multisensory evidence," says Dr. Daniel Zeller, lead author of the new study and neurologist at the Department of Neurology and at the polyclinic of the University of Würzburg. Then of course the brain is facing a contradiction: receiving tactile stimulation from the real hand while seeing the brushstrokes being applied to the dummy hand, it tries to reconcile these two sensory perceptions. The scientists were mainly interested in which regions of the cerebral cortex generate the wrong impression and how they do this.

Three different experimental settings

The rubber hand experiment saw participants being exposed to three different scenarios: The first scenario was similar to the original experimental setting with the participants' own hand hidden and a dummy hand placed in a comparable position, applying simultaneous brushstrokes. In the second scenario, the artificial hand was flipped 180° with an otherwise identical setting. In this case, the palm of the dummy hand was facing upward with the palm of the real hand facing downward. Here, too, two brushes were used. Setting three did not involve the artificial hand at all. In this experiment, only the participants' real hand was stroked with the brush without the illusionary perception of the rubber hand.

The researchers used an electroencephalogram (EEG) to record the participants' brainwaves during the experiments to find out which areas showed increased activity. This allowed them to draw conclusions as to how the human brain processes conflicting multisensory information.

The predictive coding model

"Our results are compatible with the so-called 'predictive coding' concept of multisensory integration," Zeller says. What does that mean? Simply put, it answers the question of how the brain reconciles different sensory information, visual and tactile for example, based on experiences and expectations. Perceptions that occur synchronously are preferably perceived as one single event by the brain.

"With regard to the rubber hand illusion, the brain might arrive at this conclusion: The visible hand is made of rubber and is touched in the same rhythm as my one hand. Even though plausible, this explanation is very unlikely," the neurologist explains. The competing theory in contrast says: "I am feeling the brushstrokes on the visible hand – therefore it is my own hand." This theory is much simpler, but it disagrees with the perceived arm position.

The brain changes its attention allocation

The predictive coding approach could reconcile these conflicting theories as follows: The brain readjusts its sensory precision control thereby varying its attention allocation. Reducing the somatosensory input (i.e. the perceived arm position) in this way resolves the contradiction between the information transmitted by the eye and that of the arm position.

The EEG signals recorded from the participants backed this theory: When participants said they felt the rubber hand illusion, the EEG showed characteristic patterns. These patterns can be interpreted so that the brain actively suppresses distracting somatosensory information when confronted with two conflicting theories.

Sensory Processing and the Rubber Hand Illusion—An Evoked Potentials Study. Daniel Zeller, Vladimir Litvak, Karl J. Friston, and Joseph Classen. Journal of Cognitive Neuroscience X:Y, pp. 1–10. doi:10.1162/jocn_a_00705

Contact

Dr. Daniel Zeller, Department of Neurology and Polyclinic, phone: +49 931 201-23766, Zeller_D@ukw.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>