Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The rhythm cells must go by – Daily changes in human cells

10.07.2015

Life is subject to natural rhythms, such as the light and dark cycle or seasonal variation in temperature. A recent study by researchers at the Vetmeduni Vienna, shows that the composition of human cell membranes varies depending on the time of day. These cyclical changes in cell membranes could have a significant impact on health and disease. The results were published in the Journal of Biological Rhythms.

Fatty acids are important components of cell membranes. They have signalling functions within the cells and play a role in controlling metabolic processes in the entire body. Thomas Ruf and Walter Arnold of the Research Institute of Wildlife Ecology at the University of Veterinary Medicine, Vienna, investigated these cyclic fluctuations in human cells.


Fatty acid composition in human cell membranes changes throughout the day.

Photo: Susanne Schwaiger

“Nearly all physiological processes in humans and animals, such as body temperature or heart rate, undergo daily rhythms, and many even exhibit annual fluctuations. We wanted to find out if these rhythms are related to changes in cell membranes,” explains first author Thomas Ruf.

The researchers investigated buccal mucosa cells in 20 subjects over a period of one year. Study participants collected their cells on a predetermined day every month at three hour intervals by intensively rinsing their mouths with water and then freezing the samples in special flasks.

The composition of fatty acids changes during the course of the day

The analysis of the cell membranes revealed significant daily rhythms in eleven fatty acids. Several fatty acids were present in higher concentrations at night, others during the daytime. “The cellular changes have one thing in common: they always occurred at about the same time in all participants. This shows that a clear rhythm is present,” Ruf explains.

“From animal physiology, we know that the fatty acid composition in cell membranes can be remodelled in response to environmental conditions. Fatty acid composition is especially subject to seasonal fluctuations. However, while the participants of our study all showed daily fluctuations, seasonal changes occurred only in individual cases.”

In contrast to wildlife, no clear annual rhythm could be seen in the fatty acid patterns of the study participants. Around one half of the subjects showed yearly rhythms, but these were not synchronous. Some participants exhibited a peak in spring or in summer, while in others the same fatty acid had higher concentrations in autumn or in the winter.

“In western countries, seasons are having an increasingly smaller impact on the body. This is due to the prevalence of artificial light, which makes for longer days, and the long heating season, which minimises temperature fluctuations. Annual rhythms still exist, but these are no longer synchronised with the seasons,” says Ruf.

Certain diseases occur in seasonal rhythms

This remodelling of human cell membranes could be of medical importance. It is known that certain fatty acids such as omega-3 fatty acids offer protection against certain diseases, while others, if taken up in excess, can have negative effects. The composition of the fatty acids in cell membranes may therefore have a variety of different health consequences.

“This may also explain why certain diseases and even death occur at specific times of day. Statistically speaking, heart attacks occur more often in the morning than in the evening. Blood pressure usually rises before noon. We currently do not know exactly what causes the changes in the composition of the cell membranes. The type of food eaten and the time of food intake may also play a role. These questions must still be researched,” Ruf points out.

In addition to consuming sufficient quantities of important healthy fatty acids such as omega-3 fatty acids in fish oil or oleic acids in olive oil, it may also be important to choose the right time for intake.

Service:
The article "Daily and Seasonal Rhythms in Human Mucosa Phospholipid Fatty Acid Composition" by Thomas Ruf and Walter Arnold was published in the international Journal of Biological Rhythms. doi: 10.1177/0748730415588190
http://www.ncbi.nlm.nih.gov/pubmed/26045067

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Thomas Ruf
Research Institute of Wildlife Ecology
University of Veterinary Medicine, Vienna
T 43 1 250 777 150
T 43 681 84243101
thomas.ruf@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>