Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The pharmacological “fingerprint“ of the fourth opioid receptor

27.03.2019

Pharmacologists from Jena, Toulouse, St. Louis and Boca Raton as well as Montreal, Seattle and Mountain View were able to decipher the molecular behavior of the nociceptin receptor in cells and intact animals. Now published in Science Signaling, their research paper on the investigation of the fourth opioid receptor is an important prerequisite for development and clinical evaluation of new pain medications.

Also known as Orphanin FQ-receptor, the nociceptin receptor is the youngest member in the opioid receptor family. Receptors are large protein molecules located in the cell membrane of nerve cells that function as docking stations for external signal molecules and then transmit this information inside the cell.


Pharmacologist Dr. Anika Mann from Jena University Hospital studied the regulation of the fourth opioid receptor.

Picture: Katja Bornkessel/UKJ

In this way, they regulate important functions in the central nervous system, including pain perception, motivation or reward. All opioid receptors are targets for pain-alleviating drugs, that includes morphine binding to the most-studied µ-opioid receptor, as well as the closely related δ- and κ-opioid receptors and the nociceptin receptor that was first described 25 years ago.

Depending on the receptor type, drug effects are often followed by undesirable side-effects, ranging from respiratory depression, development of tolerance and dependence, to seizures, mood changes and dizziness.

The development and aggressive marketing of synthetic and highly-potent opioids targeting the µ-opioid receptor but which quickly lose their effectiveness after prolonged use, has led to the so-called “opioid epidemic” with an average 130 casualties per day in the USA alone. Scientists and pharmaceutical companies are therefore searching with urgency to find new and safer drugs for the treatment of severe pain. In their focus are now also the nearest relatives of the µ-opioid receptor.

Stefan Schulz, professor of pharmacology and toxicology at the University Jena Hospital, has worked for many years with his research team on the signaling properties of opioid receptors. One important step in this process is the attachment of phosphate groups to the receptor protein.

“This phosphorylation changes the shape and binding properties of the receptor and regulates therefore the receptor activity. Phosphorylation is most important for desensitization when the receptor is flooded by signaling molecules, eventually becomes insensitive and finally gets internalized into the cell”, explains Stefan Schulz.

In a research collaboration with scientists from the universities of Toulouse, St. Louis, Boca Raton, Montreal, Seattle and Mountain View and with support from the German Research Council within the Transregio “ReceptorLight”, Prof. Schulz’s research team now studied the activity of the nociceptin receptor and took its pharmacological “fingerprint”. The scientists studied the receptor phosphorylation after adding various natural and synthetic drugs. Their results were now published in the prestigious journal Science Signaling.

“By tagging with specific antibodies we could localize four different phosphorylation sites in cell culture and determine the temporal sequence in which they get phosphorylated. The various drugs differ in their efficiency how they can activate the receptor and trigger the phosphorylation”, summarizes first author Dr. Anika Mann the most important results.

These could also be verified in animal studies in genetically-engineered mice where a fluorescent molecule had been attached to the nociceptin receptor. In these mice, receptor activation was shown to be dependent on the dose and chemical class of the drugs.

The scientists are especially interested in new chemical compounds that activate both the µ-opioid and the nociceptin receptor. “We have evidence that the analgesic effect is stronger in such compounds, but with less side-effects in comparison to the classical opioids. More research in this direction is really important”, affirms Stefan Schulz. He is sure that his research team has made an important contribution to this goal by taking the pharmacological “fingerprint” of the nociceptin receptor.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Stefan Schulz, Dr. Anika Mann
Institute of Pharmacology and Toxicology
University Hospital Jena
Tel.: +49 3641 9325651, +49 3641 9325671
e-Mail: stefan.schulz@med.uni-jena.de, Anika.Mann@med.uni-jena.de

Originalpublikation:

Mann A, et al. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci. Signal. 12, eaau8072 (2019). DOI: 10.1126/scisignal.aau8072

Dr. Uta von der Gönna | idw - Informationsdienst Wissenschaft
Further information:
http://www.uniklinikum-jena.de

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>