Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Origin of Life in membraneless protocells

08.10.2018

Researchers show that membraneless microdroplets are a great place for RNA concentration and activity to enable the origin of life

How life arose from non-living chemicals more than 3.5 billion years ago on Earth is one of the deepest and still unanswered scientific questions. One hypothesis (RNA world hypothesis) assumes that RNA biomolecules were key players during this time (origin of life) as they carry genetic information and act as enzymes.


Fluorescence microscopic image of membraneless microdroplets (coacervates). The green fluorescence proves RNA enzymatic activity within the coacervates.

Drobot and Tang / MPI-CBG

However, one requirement for RNA activity, is that there are a certain number of molecules within close enough proximity to one another. This would be possible if RNA was contained within a compartment, such as membraneless microdroplets (coacervates). To date, there has been no experimental evidence linking coacervate droplets with enzymatically active RNA.

Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden and the Max Planck Institute of Biochemistry (MPIB) in Martinsried, have shown for the first time, that simple RNA is active within membraneless microdroplets, enabling a suitable environment for the beginning of life. The researchers published their findings in the journal of Nature Communications.

The RNA world hypothesis assumes that life originates from self-replicating RNA, a biomolecule which was present before the evolution of DNA and proteins. However, researchers assume that on early Earth, concentrations of RNA and their building blocks may have been too dilute for a reaction to take place.

Therefore, the scattered RNA molecules needed to find a way to one another to create a reaction and start life. Suitable places for accumulating RNA could have been within compartments. Compartments can be formed with a membrane such as the cell or without a membrane where molecules can exchange readily with its environment. Membraneless compartments can be formed by phase-separation of oppositely charged molecules, a process that is similar to the separation of oil drops in water.

In their study, the researchers proved for the first time that RNA is active within such membraneless microdroplets, supporting previous hypothesis that coacervates act as protocells and could therefore be a precursor of the cell that exists today. The ability of coacervates to accumulate RNA would have helped to overcome the dilution problem of biomolecules and offered a suitable environment for reactions with each other. Furthermore, these membraneless droplets allow free transfer of RNA between the droplets.

Dr. Björn Drobot, the first author of this study, explains: “One of the really exciting things is that we have shown that coacervates act as a controlled genetic transfer system, in which shorter RNA pieces can shuttle between droplets while longer pieces are trapped in its hosting microdroplet. In this way, these protocells (coacervates) have the ability to transfer genetic information between other protocells which would have been an important criterion for starting life.”

Those findings show that membraneless microdroplets are beneficial for a selective accumulation of RNA. Dr. Dora Tang, who led the project points out: “It was hypothesized by a Russian scientist (Oparin) in the 1920s that coacervate droplets could have been the first compartments on earth and existed before cells with a membrane evolved.

They provide a way for biomolecules to concentrate create the first life on Earth. The study from my lab adds to a body of work from us and others where there is increasing evidence that coacervates are interesting systems for compartmentalization in origin of life studies as well as studies in modern biology and synthetic biology.”

Wissenschaftliche Ansprechpartner:

Dora Tang
+49 (0) 351 210 2560
tang@mpi-cbg.de

Originalpublikation:

Björn Drobot, Juan M. Iglesias-Artola, Kristian Le Vay, Viktoria Mayr, Mrityunjoy Kar, Moritz Kreysing, Hannes Mutschler & T-Y Dora Tang
Compartmentalised RNA catalysis in membrane-free coacervate protocells
Nature Communications, September 7, 2018.

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik

More articles from Life Sciences:

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch
03.04.2020 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>