Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nucleolus – a known organelle with new tasks

12.07.2019

The nucleolus is a well-known cellular structure that is easily visible under a light microscope. This nuclear structure is known as the site of ribosome production. In a recent study, researchers at the Max Planck Institute of Biochemistry in Martinsried, Germany, have shown that the nucleolus is also a site of quality control for proteins. When cells are stressed, proteins tend to misfold and to aggregate. To prevent proteins from clumping, some are temporarily stored in the nucleolus. The special biophysical conditions found in this organelle prevent harmful protein aggregation. The results of this study have now been published in the journal Science.

One would like to believe that the basic cellular processes have already been deciphered and that research can now focus on the details. But even today, new fundamental principles are being discovered through the combination of modern methods.


Super-resolution microscopy shows that the nucleolus consists of different membrane-less zones (here marked green, magenta and yellow). Misfolded proteins are temporarily stored in the green area.

© MPI of Biochemistry


Some of the authors from the MPI of Biochemistry who were involved in the study (left to right): Ralf Jungmann, Shivani Tiwary, F.-Ulrich Hartl, Frédéric Frottin, Mark Hipp, Florian Schüder

Photo: Susanne Vondenbusch-Teetz © MPI of Biochemistry

The nucleolus is a nuclear structure that was first described in the 1830s. In the 1960s it was recognized that ribosomes, the protein factories, are produced in this organelle.

Researchers have known for some time that protein folding helpers, so-called chaperones, move into the nucleolus under certain circumstances.

It has been suggested that this relocation is related to protein production. Now researchers from the Max Planck Institute (MPI) of Biochemistry have shown that the chaperones that move into the nucleolus are bound to stress-sensitive proteins.

As pioneer of chaperone research, F.-Ulrich Hartl and his team have discovered that chaperones are crucial for the correct folding of proteins and play a central role in the quality control of proteins. If protein folding does not work correctly, misfolded proteins can accumulate and clump together. The resulting protein aggregates can often be observed in neurodegenerative diseases such as Alzheimer's, Parkinson's or Huntington's disease.

Mark Hipp, corresponding author of the study and member of F.-Ulrich Hartl's department, comments: “We have been using luciferase as a model protein for many years in order to investigate the mechanisms of protein folding”.

Bound to a fluorescent protein, the scientists can see under the microscope whether the protein is correctly folded or if it is misfolded and aggregates. “We were able to show that stressing cells by heating them to 43°C, results in the transport of the misfolded luciferase protein together with the chaperones into the nucleolus.”

The researchers cooperated with the groups of Ralf Jungmann, developer of high-resolution fluorescence methods, and Jürgen Cox, developer of bioinformatic analysis methods, both also located at the MPI of Biochemistry, in order to elucidate the mechanistic details of this process. Together they were able to show that the misfolded luciferase protein behaved differently within the nucleolus than in the rest of the cell.

“In the nucleolus, misfolded proteins were kept in a liquid-like state instead of aggregating,” explains Frédéric Frottin, first author of the study. This is possible due to the specific biophysical conditions of this organelle.

“Proteins that usually tend to aggregate are stored in a less dangerous form during the stress which protects cells from damage. Once the cell had time to recover, the proteins can be refolded and released from the nucleolus,” continues Frottin. Now, the cells have the capacity to activate further mechanisms that enable the protein to be repaired or degraded.

The researchers could also show that this protective mechanism fails if the cell stress lasts too long. “This is a new mechanism that maintains the integrity of the cell,” says Mark Hipp. Maintaining this integrity is ultimately essential to prevent aging and the development of disease.

Wissenschaftliche Ansprechpartner:

Dr. Mark Hipp
Department of Cellular Biochemistry
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried/Germany
E-mail: hipp@biochem.mpg.de
https://www.biochem.mpg.de/en/rd/hartl/mark_hipp

Prof. Dr. F.-Ulrich Hartl
Department of Cellular Biochemistry
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: uhartl@biochem.mpg.de
www.biochem.mpg.de/hartl

Prof. Dr. Ralf Jungmann
Molecular Imaging and Bionanotechnology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: jungmann@biochem.mpg.de
http://www.biochem.mpg.de/jungmann

Originalpublikation:

F. Frottin, F. Schueder, S. Tiwary, R. Gupta, R. Körner, T. Schlichthaerle, J. Cox, R. Jungmann, F.U. Hartl, M.S. Hipp: The nucleolus functions as a phase-separated protein quality control compartment. Science. July 2019
DOI: https://doi.org/10.1126/science.aaw9157

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie
Further information:
http://www.biochem.mpg.de/

More articles from Life Sciences:

nachricht Super salty, subzero Arctic water provides peek at possible life on other planets
12.07.2019 | University of Washington

nachricht How plague pathogens trick the immune system
12.07.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hubble discovers mysterious black hole disc

12.07.2019 | Physics and Astronomy

Super salty, subzero Arctic water provides peek at possible life on other planets

12.07.2019 | Life Sciences

UC San Diego cancer scientists identify new drug target for multiple tumor types

12.07.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>