Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nucleolus – a known organelle with new tasks

12.07.2019

The nucleolus is a well-known cellular structure that is easily visible under a light microscope. This nuclear structure is known as the site of ribosome production. In a recent study, researchers at the Max Planck Institute of Biochemistry in Martinsried, Germany, have shown that the nucleolus is also a site of quality control for proteins. When cells are stressed, proteins tend to misfold and to aggregate. To prevent proteins from clumping, some are temporarily stored in the nucleolus. The special biophysical conditions found in this organelle prevent harmful protein aggregation. The results of this study have now been published in the journal Science.

One would like to believe that the basic cellular processes have already been deciphered and that research can now focus on the details. But even today, new fundamental principles are being discovered through the combination of modern methods.


Super-resolution microscopy shows that the nucleolus consists of different membrane-less zones (here marked green, magenta and yellow). Misfolded proteins are temporarily stored in the green area.

© MPI of Biochemistry


Some of the authors from the MPI of Biochemistry who were involved in the study (left to right): Ralf Jungmann, Shivani Tiwary, F.-Ulrich Hartl, Frédéric Frottin, Mark Hipp, Florian Schüder

Photo: Susanne Vondenbusch-Teetz © MPI of Biochemistry

The nucleolus is a nuclear structure that was first described in the 1830s. In the 1960s it was recognized that ribosomes, the protein factories, are produced in this organelle.

Researchers have known for some time that protein folding helpers, so-called chaperones, move into the nucleolus under certain circumstances.

It has been suggested that this relocation is related to protein production. Now researchers from the Max Planck Institute (MPI) of Biochemistry have shown that the chaperones that move into the nucleolus are bound to stress-sensitive proteins.

As pioneer of chaperone research, F.-Ulrich Hartl and his team have discovered that chaperones are crucial for the correct folding of proteins and play a central role in the quality control of proteins. If protein folding does not work correctly, misfolded proteins can accumulate and clump together. The resulting protein aggregates can often be observed in neurodegenerative diseases such as Alzheimer's, Parkinson's or Huntington's disease.

Mark Hipp, corresponding author of the study and member of F.-Ulrich Hartl's department, comments: “We have been using luciferase as a model protein for many years in order to investigate the mechanisms of protein folding”.

Bound to a fluorescent protein, the scientists can see under the microscope whether the protein is correctly folded or if it is misfolded and aggregates. “We were able to show that stressing cells by heating them to 43°C, results in the transport of the misfolded luciferase protein together with the chaperones into the nucleolus.”

The researchers cooperated with the groups of Ralf Jungmann, developer of high-resolution fluorescence methods, and Jürgen Cox, developer of bioinformatic analysis methods, both also located at the MPI of Biochemistry, in order to elucidate the mechanistic details of this process. Together they were able to show that the misfolded luciferase protein behaved differently within the nucleolus than in the rest of the cell.

“In the nucleolus, misfolded proteins were kept in a liquid-like state instead of aggregating,” explains Frédéric Frottin, first author of the study. This is possible due to the specific biophysical conditions of this organelle.

“Proteins that usually tend to aggregate are stored in a less dangerous form during the stress which protects cells from damage. Once the cell had time to recover, the proteins can be refolded and released from the nucleolus,” continues Frottin. Now, the cells have the capacity to activate further mechanisms that enable the protein to be repaired or degraded.

The researchers could also show that this protective mechanism fails if the cell stress lasts too long. “This is a new mechanism that maintains the integrity of the cell,” says Mark Hipp. Maintaining this integrity is ultimately essential to prevent aging and the development of disease.

Wissenschaftliche Ansprechpartner:

Dr. Mark Hipp
Department of Cellular Biochemistry
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried/Germany
E-mail: hipp@biochem.mpg.de
https://www.biochem.mpg.de/en/rd/hartl/mark_hipp

Prof. Dr. F.-Ulrich Hartl
Department of Cellular Biochemistry
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: uhartl@biochem.mpg.de
www.biochem.mpg.de/hartl

Prof. Dr. Ralf Jungmann
Molecular Imaging and Bionanotechnology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: jungmann@biochem.mpg.de
http://www.biochem.mpg.de/jungmann

Originalpublikation:

F. Frottin, F. Schueder, S. Tiwary, R. Gupta, R. Körner, T. Schlichthaerle, J. Cox, R. Jungmann, F.U. Hartl, M.S. Hipp: The nucleolus functions as a phase-separated protein quality control compartment. Science. July 2019
DOI: https://doi.org/10.1126/science.aaw9157

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie
Further information:
http://www.biochem.mpg.de/

More articles from Life Sciences:

nachricht Phagocytes versus killer cells - A closer look into the tumour tissue
21.10.2019 | Universität Duisburg-Essen

nachricht How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>