Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The next phase: Using neural networks to identify gas-phase molecules

14.09.2018

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have begun to use neural networks to identify the structural signatures of molecular gases, potentially providing new and more accurate sensing techniques for researchers, the defense industry and drug manufacturers.

This breakthrough work has been recognized as a finalist for a 2018 R&D 100 award. R&D 100 awards, called the "Oscars of Innovation," are given out by R&D Magazine to the most significant innovations developed in a given year.


This schematic of a neural network shows the assignment of rotational spectra (red bars at left) by an algorithm (center) to identify the structure of a molecule in the gas phase (right).

Credit: Argonne National Laboratory

"This means that when you're at an airport running a security test on an unidentified chemical or if you're a drug manufacturer scanning your sample for impurities, you can run so many more of these tests accurately in a much smaller period of time." -- Daniel Zaleski, Argonne postdoctoral researcher

Neural networks -- so named because they operate in an interconnected fashion similar to our brains -- offer chemists a major opportunity for faster and more rigorous science because they provide one way in which machines are able to learn and even make determinations about data. To be effective, though, they have to be carefully taught. That is why this area of research is called machine learning.

"Say you wanted to teach a computer to recognize a cat," said Argonne chemist Kirill Prozument. "You can try to explain to a computer what a cat is by using an algorithm, or you can show it five thousand different photos of cats."

But instead of looking at cats, Prozument and former Argonne postdoctoral researcher Daniel Zaleski wanted to identify the structure of gas-phase molecules. To do so, they used the molecules' rotational spectra.

Scientists determine a molecule's rotational spectra by observing how the molecule interacts with electromagnetic waves. In classical physics, when a wave of a particular frequency hits a molecule in the gas phase, it causes the molecule to rotate.

Because molecules are quantum objects, they have characteristic frequencies at which they absorb and emit energy that are unique to that type of molecule. This fingerprint gives researchers an excellent idea of the pattern of quantum energy levels of gas-phase molecules.

"We're particularly interested in looking at the products that result from chemical reactions," Prozument said. "Suppose we don't know what chemical products we've generated, and we don't know what molecules there are. We sweep with a millimeter-wave pulse through all possible frequencies, but only frequencies that 'ring the bell' for the molecules will be absorbed and only those will be re-emitted."

Zaleski coded thousands of these rotational spectra, labeling each different spectrum for the neural network. The advantage of using a neural network is that it only had to "learn" these spectra once, as opposed to each time a sample was tested.

"This means that when you're at an airport running a security test on an unidentified chemical or if you're a drug manufacturer scanning your sample for impurities, you can run so many more of these tests accurately in a much smaller period of time," Zaleski said. Even though these resonances act as a filter, the amount of spectroscopic data produced is still daunting. "Going from raw spectroscopic data to actual chemical information is the challenge," Zaleski said. "The data consist of thousands if not tens of thousands of elements -- it's messy."

Zaleski, now an assistant professor at Colgate University, compared the search for specific molecular signatures to the children's picture book "Where's Waldo?", in which the reader has to scan a crowded scene to find the titular character. "Waldo has a very specific dress and a specific pattern, so you'll know him if you see him," Zaleski said. "Our challenge is that each molecule is like a different version of Waldo."

According to Zaleski, there are fewer than 100 scientists in the world trained in assigning rotational spectra. And while it could take up to a day to determine the molecular signatures using previous methods, neural networks reduce the processing time to less than a millisecond.

The neural network runs on graphics processing unit (GPU) cards typically used by the video gaming community. "Until a couple of years ago, the GPU cards we're using just didn't really exist," Zaleski said. "We are in an amazing time right now in terms of the computing technology available to us."

Ultimately, Prozument and Zaleski hope to make their spectroscopic technique as fully automated as possible. "Our goal is to offer the tools of rotational spectroscopic analysis to non-experts," Prozument said. "If you can have spectra accurately assigned by a machine that can learn, you can make the whole process much more portable and accessible since you no longer need as much technical expertise."

###

An article based on the study, "Automated assignment of rotational spectra using artificial neural networks," appeared in the September 13 issue of the Journal of Chemical Physics.

The work was funded by the U.S. Department of Energy's Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Chris Kramer
ckramer@anl.gov
630-252-5580

 @argonne

http://www.anl.gov 

Chris Kramer | EurekAlert!

Further reports about: GPU gas-phase molecules neural network spectroscopic data

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>