Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The next phase: Using neural networks to identify gas-phase molecules

14.09.2018

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have begun to use neural networks to identify the structural signatures of molecular gases, potentially providing new and more accurate sensing techniques for researchers, the defense industry and drug manufacturers.

This breakthrough work has been recognized as a finalist for a 2018 R&D 100 award. R&D 100 awards, called the "Oscars of Innovation," are given out by R&D Magazine to the most significant innovations developed in a given year.


This schematic of a neural network shows the assignment of rotational spectra (red bars at left) by an algorithm (center) to identify the structure of a molecule in the gas phase (right).

Credit: Argonne National Laboratory

"This means that when you're at an airport running a security test on an unidentified chemical or if you're a drug manufacturer scanning your sample for impurities, you can run so many more of these tests accurately in a much smaller period of time." -- Daniel Zaleski, Argonne postdoctoral researcher

Neural networks -- so named because they operate in an interconnected fashion similar to our brains -- offer chemists a major opportunity for faster and more rigorous science because they provide one way in which machines are able to learn and even make determinations about data. To be effective, though, they have to be carefully taught. That is why this area of research is called machine learning.

"Say you wanted to teach a computer to recognize a cat," said Argonne chemist Kirill Prozument. "You can try to explain to a computer what a cat is by using an algorithm, or you can show it five thousand different photos of cats."

But instead of looking at cats, Prozument and former Argonne postdoctoral researcher Daniel Zaleski wanted to identify the structure of gas-phase molecules. To do so, they used the molecules' rotational spectra.

Scientists determine a molecule's rotational spectra by observing how the molecule interacts with electromagnetic waves. In classical physics, when a wave of a particular frequency hits a molecule in the gas phase, it causes the molecule to rotate.

Because molecules are quantum objects, they have characteristic frequencies at which they absorb and emit energy that are unique to that type of molecule. This fingerprint gives researchers an excellent idea of the pattern of quantum energy levels of gas-phase molecules.

"We're particularly interested in looking at the products that result from chemical reactions," Prozument said. "Suppose we don't know what chemical products we've generated, and we don't know what molecules there are. We sweep with a millimeter-wave pulse through all possible frequencies, but only frequencies that 'ring the bell' for the molecules will be absorbed and only those will be re-emitted."

Zaleski coded thousands of these rotational spectra, labeling each different spectrum for the neural network. The advantage of using a neural network is that it only had to "learn" these spectra once, as opposed to each time a sample was tested.

"This means that when you're at an airport running a security test on an unidentified chemical or if you're a drug manufacturer scanning your sample for impurities, you can run so many more of these tests accurately in a much smaller period of time," Zaleski said. Even though these resonances act as a filter, the amount of spectroscopic data produced is still daunting. "Going from raw spectroscopic data to actual chemical information is the challenge," Zaleski said. "The data consist of thousands if not tens of thousands of elements -- it's messy."

Zaleski, now an assistant professor at Colgate University, compared the search for specific molecular signatures to the children's picture book "Where's Waldo?", in which the reader has to scan a crowded scene to find the titular character. "Waldo has a very specific dress and a specific pattern, so you'll know him if you see him," Zaleski said. "Our challenge is that each molecule is like a different version of Waldo."

According to Zaleski, there are fewer than 100 scientists in the world trained in assigning rotational spectra. And while it could take up to a day to determine the molecular signatures using previous methods, neural networks reduce the processing time to less than a millisecond.

The neural network runs on graphics processing unit (GPU) cards typically used by the video gaming community. "Until a couple of years ago, the GPU cards we're using just didn't really exist," Zaleski said. "We are in an amazing time right now in terms of the computing technology available to us."

Ultimately, Prozument and Zaleski hope to make their spectroscopic technique as fully automated as possible. "Our goal is to offer the tools of rotational spectroscopic analysis to non-experts," Prozument said. "If you can have spectra accurately assigned by a machine that can learn, you can make the whole process much more portable and accessible since you no longer need as much technical expertise."

###

An article based on the study, "Automated assignment of rotational spectra using artificial neural networks," appeared in the September 13 issue of the Journal of Chemical Physics.

The work was funded by the U.S. Department of Energy's Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Chris Kramer
ckramer@anl.gov
630-252-5580

 @argonne

http://www.anl.gov 

Chris Kramer | EurekAlert!

Further reports about: GPU gas-phase molecules neural network spectroscopic data

More articles from Life Sciences:

nachricht RUDN biochemists found out how ROS affect cisplatin resistance in ovarian cancer cells
14.09.2018 |

nachricht Viruses under the Microscope
14.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

Im Focus: OLED integration in textiles: functional and eye-catching

Organic light-emitting diodes (OLED) are mainly known from televisions and smartphone displays. They can be used as lighting objects in car tail lights or lights. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as a partner for customer-specific OLED development and production is now presenting OLED elements that can be integrated into textiles at the Electronics System Integration Technology Conference ESTC 2018 from September 18 - 21, 2018 in Dresden at booth no. 29.

The versatile OLEDs can not only light in color, they can also be designed in any shape and even transparent or dimmable. Applied on wafer-thin foils, they are...

Im Focus: Novel 3D printed polymer lenses for X-ray microscopes: highly efficient and low cost

Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart invented a new and cost-effective method for making X-ray lenses with nanometer-sized features and excellent focusing capabilities. By using an advanced 3D printing technique, a single lens can be manufactured under a minute from polymeric materials with extremely favorable X-ray optical properties, hence the costs of prototyping and manufacturing are strongly reduced. High-throughput and high-yield manufacturing processes of such lenses are sought after world-wide, which is why the scientists have filed a patent for their invention.

X-ray microscopes are fascinating imaging tools. They uniquely combine nanometer-size resolution with a large penetration depth: X-ray microscopy or XRM is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

When 80 microns is enough

14.09.2018 | Physics and Astronomy

The next phase: Using neural networks to identify gas-phase molecules

14.09.2018 | Life Sciences

Russian and German physicists developed a mathematical model of trapped atoms and ions

14.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>