Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The next phase: Using neural networks to identify gas-phase molecules

14.09.2018

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have begun to use neural networks to identify the structural signatures of molecular gases, potentially providing new and more accurate sensing techniques for researchers, the defense industry and drug manufacturers.

This breakthrough work has been recognized as a finalist for a 2018 R&D 100 award. R&D 100 awards, called the "Oscars of Innovation," are given out by R&D Magazine to the most significant innovations developed in a given year.


This schematic of a neural network shows the assignment of rotational spectra (red bars at left) by an algorithm (center) to identify the structure of a molecule in the gas phase (right).

Credit: Argonne National Laboratory

"This means that when you're at an airport running a security test on an unidentified chemical or if you're a drug manufacturer scanning your sample for impurities, you can run so many more of these tests accurately in a much smaller period of time." -- Daniel Zaleski, Argonne postdoctoral researcher

Neural networks -- so named because they operate in an interconnected fashion similar to our brains -- offer chemists a major opportunity for faster and more rigorous science because they provide one way in which machines are able to learn and even make determinations about data. To be effective, though, they have to be carefully taught. That is why this area of research is called machine learning.

"Say you wanted to teach a computer to recognize a cat," said Argonne chemist Kirill Prozument. "You can try to explain to a computer what a cat is by using an algorithm, or you can show it five thousand different photos of cats."

But instead of looking at cats, Prozument and former Argonne postdoctoral researcher Daniel Zaleski wanted to identify the structure of gas-phase molecules. To do so, they used the molecules' rotational spectra.

Scientists determine a molecule's rotational spectra by observing how the molecule interacts with electromagnetic waves. In classical physics, when a wave of a particular frequency hits a molecule in the gas phase, it causes the molecule to rotate.

Because molecules are quantum objects, they have characteristic frequencies at which they absorb and emit energy that are unique to that type of molecule. This fingerprint gives researchers an excellent idea of the pattern of quantum energy levels of gas-phase molecules.

"We're particularly interested in looking at the products that result from chemical reactions," Prozument said. "Suppose we don't know what chemical products we've generated, and we don't know what molecules there are. We sweep with a millimeter-wave pulse through all possible frequencies, but only frequencies that 'ring the bell' for the molecules will be absorbed and only those will be re-emitted."

Zaleski coded thousands of these rotational spectra, labeling each different spectrum for the neural network. The advantage of using a neural network is that it only had to "learn" these spectra once, as opposed to each time a sample was tested.

"This means that when you're at an airport running a security test on an unidentified chemical or if you're a drug manufacturer scanning your sample for impurities, you can run so many more of these tests accurately in a much smaller period of time," Zaleski said. Even though these resonances act as a filter, the amount of spectroscopic data produced is still daunting. "Going from raw spectroscopic data to actual chemical information is the challenge," Zaleski said. "The data consist of thousands if not tens of thousands of elements -- it's messy."

Zaleski, now an assistant professor at Colgate University, compared the search for specific molecular signatures to the children's picture book "Where's Waldo?", in which the reader has to scan a crowded scene to find the titular character. "Waldo has a very specific dress and a specific pattern, so you'll know him if you see him," Zaleski said. "Our challenge is that each molecule is like a different version of Waldo."

According to Zaleski, there are fewer than 100 scientists in the world trained in assigning rotational spectra. And while it could take up to a day to determine the molecular signatures using previous methods, neural networks reduce the processing time to less than a millisecond.

The neural network runs on graphics processing unit (GPU) cards typically used by the video gaming community. "Until a couple of years ago, the GPU cards we're using just didn't really exist," Zaleski said. "We are in an amazing time right now in terms of the computing technology available to us."

Ultimately, Prozument and Zaleski hope to make their spectroscopic technique as fully automated as possible. "Our goal is to offer the tools of rotational spectroscopic analysis to non-experts," Prozument said. "If you can have spectra accurately assigned by a machine that can learn, you can make the whole process much more portable and accessible since you no longer need as much technical expertise."

###

An article based on the study, "Automated assignment of rotational spectra using artificial neural networks," appeared in the September 13 issue of the Journal of Chemical Physics.

The work was funded by the U.S. Department of Energy's Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Chris Kramer
ckramer@anl.gov
630-252-5580

 @argonne

http://www.anl.gov 

Chris Kramer | EurekAlert!

Further reports about: GPU gas-phase molecules neural network spectroscopic data

More articles from Life Sciences:

nachricht "Make two out of one" - Division of Artificial Cells
19.02.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
19.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>