Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The neocortex is critical for learning and memory


A remarkable feature of the brain is that similar information is invariably represented in several parallel brain areas. It is therefore often unclear whether and how these different areas contribute to behavioral functions such as learning and memory. In the latest issue of Neuron, a team of scientists led by Johannes J. Letzkus, Research Group Leader at the Max Planck Institute for Brain Research, discovered that the neocortex plays a key role in learning and memory, in particular when auditory stimuli are complex and naturalistic. Memory is mediated by plasticity of communication with the amygdala, the brain’s hub for emotions.

The neocortex is the largest area of the human brain. It has expanded and differentiated enormously during mammalian evolution, and is thought to mediate many of the capacities that distinguish humans from their closest relatives. Moreover, this area also plays a central role in many psychiatric disorders.

Encoding of the learned relevance of sensory information at the population level in the neocortex.

Given this fundamental importance, it is perhaps surprising that in many instances lesion or inactivation of the neocortex has virtually no effect on an animal’s behavioral capacities, raising the question which brain functions this area mediates.

“We were struck by the fact that the overwhelming number of studies to date have used very simple, highly reductionist stimuli in this work” says Johannes Letzkus. “While they offer good experimental control, they just don’t occur in nature, and we hypothesized that neocortical function might be especially relevant if more naturalistic information is used for learning”.

A class of complex, naturalistic stimuli that are a key component of many animal vocalizations as well as human speech are so called frequency-modulated (FM) sweeps. Indeed, when the scientists compared these stimuli to simple pure tones, there was a striking difference: While memory to simple stimuli was completely unaffected by inhibition of the auditory cortex in mice, the same manipulation caused a profound deficit for complex FM sweeps. Dr. Letzkus remembers:

“When I discussed these results with Tamas Dalmay, the PhD student who drove this work, we were struck by how clearly our hypothesis had manifested in the data. The complexity of auditory information thus emerges as a key organizing feature that determines whether the neocortex is critically involved in learning”. These insights were further underpinned by independent work in the laboratory of Brice Bathellier (Neuro-PSI, Paris, France), who found very similar effects in a different learning task.

“These results therefore firmly put the neocortex on the map for learning under naturalistic conditions” says Dr. Letzkus. “This is particularly significant since all human experience that may lead to adaptive as well as maladaptive outcomes are likely of a complex nature”.

Fueled by this discovery, the Letzkus lab went on to discover that signal flow from neocortex to the amygdala, the brain’s hub for emotional information, is a central substrate of naturalistic memory. A collaboration with the groups of Julijana Gjorgjieva (Max Planck Institute for Brain Research) and Philip Tovote (University Hospital Würzburg, Germany) enabled the team to show that memory cannot be properly expressed when this pathway is inhibited. Strikingly, its activation even caused behavioral responses in naïve animals that hadn’t previously learned anything.

Johannes Letzkus: “If this pathway is indeed central for memory, then one would expect it to change its function due to learning”. Indeed, work by Elisabeth Abs in the Letzkus lab revealed that these neurons encode the difference between sensory stimuli much more efficiently once they had acquired learned relevance (Figure above).

“Our hope is that the present findings have put the neocortex as an underappreciated brain area in the context of learning and memory on the map also for other labs. Given the very clear difference we demonstrate between reductionist and naturalistic information, I also strongly feel that future work should put a greater emphasis on the use of stimuli with real-world relevance” concludes Dr. Letzkus.

This work was supported by the German Research Foundation, the European Research Council and the Max Planck Society.

Wissenschaftliche Ansprechpartner:

Dr. Johannes J. Letzkus


Dalmay T.*, Abs E.*, Poorthuis R.B., Hartung J., Pu D., Onasch S., Lozano Y.R., Signoret-Genest J., Gjorgieva J., Letzkus J.J. A critical role for neurocortical processing of threat memory. Neuron 2019 *Authors contributed equally. DOI:

Dr. Irina Epstein | Max-Planck-Institut für Hirnforschung
Further information:

More articles from Life Sciences:

nachricht Bacteria loop-the-loop
27.02.2020 | University of Göttingen

nachricht Project on microorganisms: Saci, the bio-factory
27.02.2020 | Universität Duisburg-Essen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>