Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms

05.12.2016

The international agreement is unlikely to generate revenues for developing countries, but instead threatens collaborative microbiological research

The restrictive implementation of the Nagoya Protocol threatens to hinder basic microbiological research and is likely to achieve the exact opposite of the Protocol’s stated goals. Instead of facilitating the “fair and equitable sharing of benefits arising from the utilization of genetic resources” the Protocol’s enforcement might actually exclude developing countries and their scientists from international research and collaboration. This discrepancy is related to certain basic concepts of the Nagoya Protocol that do not apply to microorganisms.

Braunschweig - The currently restrictive implementation of the Nagoya Protocol threatens to hinder basic microbiological research and is likely to achieve the exact opposite of the Protocol’s stated goals. Instead of facilitating the “fair and equitable sharing of benefits arising from the utilization of genetic resources” the Protocol’s enforcement might actually exclude developing countries and their scientists from international research and collaboration, according to Professor Jörg Overmann and Dr. Amber Hartman Scholz of the Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures. Their analysis of the situation was recently published in Trends in Microbiology, a well renowned journal in the field.

This discrepancy is related to certain basic concepts of the Nagoya Protocol that do not apply to microorganisms. For example, there are no geographical hotspots of microbial diversity, as there are for higher plants and animals. “Most bacteria are true cosmopolites; they are found practically everywhere in the world,” says DSMZ Managing Director Overmann. An unintended result of the Protocol is that scientists will avoid countries with impractical regulations for sampling and studying microorganisms. Thus, Overmann and Scholz expect that there will be less international collaboration and knowledge transfer to developing countries, not more, as intended by the Protocol.

The situation is exacerbated by unrealistic perceptions regarding the commercial value of microbial resources. “There seems to be the notion that many bacteria harbor a million-dollar substance,” says Overmann. “This makes many countries protect their resources like gold mines, strictly regulating any access to them.” Statistically, however, about only 1 in 100,000 bacterial strains will provide the basis for a pharmaceutical product, while isolating and characterizing a single strain with novel properties can cost up to 10,000 euros. Even large pharmaceutical companies now avoid the financial risk of spending up to a billion euros to isolate a single suitable microorganism.

Instead, it usually falls to basic microbiological research to discover novel microorganisms and to study and understand their characteristics. However, strict regulations imposed by the Nagoya Protocol more and more often hinder just this type of basic research. “The Protocol is based on a far too broad definition of the term ‘use’,” says Overmann. Under the Protocol, "use" pertains not only to commercial uses, but to all forms of basic research, including the depositing of strains in public collections. Microbiological research, however, usually does not come with commercial interests attached, and in those rare cases in which a strain is commercially used, depositing the strains in public collections would actually guarantee the traceability of the resource, enabling subsequent negotiations with the country of origin.

To date, 80 countries have ratified the Nagoya Protocol. Overmann and Scholz hope that the countries ratifying the Protocol next will implement it in more balanced ways, allowing all parties involved to be able to benefit. “Countries that take a rigid stance on this issue, misinterpreting scientific curiosity as commercial interests or even biopiracy, will miss out on opportunities for their own research and development,” according to Overmann. They will experience severe disadvantages compared with countries striving for trust-based, scientifically informed, collaborative, and efficient approaches to implementing the Nagoya Protocol. The latter countries, Overmann thinks, will benefit from research and development, and will experience significant competitive advantages in both science and bio-economics, promoting their own future development.

Background
The Leibniz Institute DSMZ is one of the world’s leading biological resource centers, archiving viable samples of bacterial diversity. It provides authentic, quality-controlled samples to researchers worldwide who order more than 40,000 products annually from DSMZ. DSMZ serves as a depository for microorganisms. Newly characterized bacterial species must be deposited in two public collections before they can be officially described. The public collections then make them available to the scientific community, enabling the verification of published research results. In addition to its depository function, DSMZ runs its own comprehensive microbiological research program.

The Nagoya Protocol is an international supplementary agreement to the UN’s Convention on Biological Diversity (CBD). Its goal is to regulate the “access to genetic resources and the fair and equitable sharing of benefits arising from their utilization,” briefly referred to as Access and Benefit Sharing (ABS). Specifically, this means that any biological resource, including plants, animals and parts thereof, microorganisms, but also DNA, will be the property of the country from which they originate. The only exemption from this rule covers human samples. Collecting, exporting, and using such resources require appropriate permits issued by the respective country of origin. The Nagoya Protocol entered into force on October 12, 2014, and a corresponding German law entered into force on July 1, 2016.

Contact:
Christian Engel
Head of Press and Communication
Tel. + 49 (0)531 2616-300
Fax +49 (0)531 2616-418
Email christian.engel@dsmz.de

Weitere Informationen:

http://www.cell.com/trends/microbiology/fulltext/S0966-842X%2816%2930164-0 Article Microbiological Research Under the Nagoya Protocol: Facts and Fiction
http://dx.doi.org/10.1016/j.tim.2016.11.001 DOI
https://www.dsmz.de/deposit/nagoya-protocol.html Deposit of biological material at the DSMZ: Compliance with the Nagoya Protocol

Christian Engel | idw - Informationsdienst Wissenschaft
Further information:
https://www.dsmz.de/home/details/entry/the-nagoya-protocol.html

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>