Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mutations that matter

21.04.2020

Researchers in Germany identified the precise structural differences that determine if a protein becomes an active enzyme or an iron scaffold. This finding, reported in Nature Communications, provides deeper insight into fundamental cellular processes, such as DNA synthesis and iron metabolism.

Four mutations in a group of proteins, called glutaredoxins, determine how the proteins operate in everything from bacteria and yeast to plants and humans, researchers report in the journal Nature Communications.


Scheme of the four determinant structural differences between enzymatically active and inactive glutaredoxins

TU Kaiserslautern, M. Deponte


Comparison of the four determinant structural differences between enzymatically active and inactive glutaredoxins

TU Kaiserslautern, M. Deponte

“These proteins are central to essential metabolic pathways,” said Professor Marcel Deponte, a biochemist who led the research at the Technische Universität Kaiserslautern. “Learning more about them improves our basic understanding of how life works.”

There are two major classes of glutaredoxin proteins. Class I glutaredoxins are enzymes that catalyze important redox reactions, such as the synthesis of the precursors of DNA. Class II glutaredoxins are not active catalysts, but rather help sense and transport iron-sulfur clusters, a key part of iron metabolism.

While biochemists have known about the two types for well over 20 years, it was unclear what structural differences are responsible for the distinct functions. Deponte teamed up with researchers at the Universität des Saarlandes and Heinrich-Heine-Universität in Düsseldorf to investigate the proteins in test tubes, in yeast cells and in computational models.

Nuclear magnetic resonance structures revealed four areas containing differences, or mutations, between the Class I and Class II amino acid sequences. Deponte and his collaborators wanted to know exactly how much each mutation contributed to making the protein a catalytically active Class I or an inactive Class II glutaredoxin.

To measure this, they used a combination of editing and tracking techniques. First, they produced and purified the proteins in order to analyze their activity in a test tube assay. Normally, an active Class I enzyme would catalyze, or assist, a redox reaction, which are chemical reactions involving the transfer of electrons between molecules.

The team systematically replaced regions in the inactive Class II protein with corresponding regions from the active Class I proteins, and vice versa. The most notable physical difference between the two classes is a long loop present in the inactive Class II proteins. When the researchers cut out the long loop and replaced it with the shorter one from a Class I protein, they observed slightly increased catalytic activity.

However, in combination with other mutations, the activity of the Class II protein progressively increased. The researchers concluded that the long loop acts like an off switch in the inactive Class II, and that introduction of all four mutations from Class I glutaredoxins was required to fully convert the inactive protein into an active one.

Ultimately, they were able to turn inactive proteins, whose job is normally to sense or deliver iron-sulfur clusters, into active enzymes catalyzing redox reactions; and vice versa.

“Mutations in all four areas work together to make the protein either an active redox catalyst or an iron-binding protein,” Deponte said.

The Saarlandes biochemistry team, led by Professor Bruce Morgan, then developed an assay to test the relevance of the mutations in live yeast cells, confirming the same pattern of results – all four mutations are required for complete transition between the two classes.

For these analyses, the researchers used a green fluorescent probe that changes its fluorescence when it senses redox reactions. The altered light from the fluorescent probe signaled how much a mutation enabled the protein to catalyze redox reactions in the cells.

Meanwhile, the Düsseldorf Computational Pharmaceutical Chemistry and Molecular Bioinformatics Group, led by Professor Holger Gohlke, ran molecular dynamics simulations using supercomputers, which also supported and complemented the findings.

Taken together, the three lines of inquiry “provide a really convincing picture that we understand how these proteins work,” Deponte said. The finding was made possible through a priority program grant encouraging this type of collaboration by the German Research Foundation, he added.

Next steps could include exploring the effects these mutations have on human cells or applying a similar investigatory process to other proteins. Thanks to advances in genetic sequencing technologies, thousands of proteins have been decoded, but scientists have barely scratched the surface of understanding what they do or how they function.

Original Publication:

M. Deponte et al., “Quantitative assessment of the determinant structural differences between redox-active and inactive glutaredoxins”, Nature Communications, DOI: 10.1038/s41467-020-15441-3 (04/2020)

Image Caption:
Image 1: "Scheme of the four determinant structural differences between enzymatically active and inactive glutaredoxins"

Image 2:
"Comparison of the four determinant structural differences between enzymatically active and inactive glutaredoxins"

Image Rights: TU Kaiserslautern, M. Deponte

For further questions please contact:
Prof. Dr. Marcel Deponte
TU Kaiserslautern
Tel: 0631 - 205 4060
deponte@chemie.uni-kl.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Marcel Deponte
TU Kaiserslautern
Tel: 0631 - 205 4060
deponte@chemie.uni-kl.de

Originalpublikation:

M. Deponte et al., “Quantitative assessment of the determinant structural differences between redox-active and inactive glutaredoxins”, Nature Communications, DOI: 10.1038/s41467-020-15441-3 (04/2020)

Presse- und Öffentlichkeitsarbeit | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Life Sciences:

nachricht Enzymes as double agents: new mechanism discovered in protein modification
07.07.2020 | Westfälische Wilhelms-Universität Münster

nachricht Protein linked to cancer acts as a viscous glue in cell division
07.07.2020 | Rensselaer Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>