Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The messenger in Huntington's disease

09.11.2016

A research effort led by Eulàlia Martí at the Centre for Genomic Regulation reveals new molecular mechanisms of Huntington's chorea

Huntington's disease is a neurodegenerative disease that is presently incurable. Scientists around the world are researching its causes and molecular processes in the attempt to find a treatment.


Image of fibroblasts from patients with Huntington's disease marked with fluorescence. Above, the cells are mutated RNA accumulation. Below, the cells no longer expressed RNA blocked accumulations.

Credit: CRG

The research just published by a group of scientists from the Centre for Genomic Regulation (CRG) led by Eulàlia Martí, in cooperation with researchers from the University of Barcelona (UB) and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), has brought to light new information on the molecular mechanisms that cause Huntington's disease, and defines new pathways to therapy discovery. The results of the study are published in the November issue of the Journal of Clinical Investigation. Eulàlia Martí is the lead author, while Laura Rué and Mónica Bañez are its first authors.

Huntington's disease is caused by the excessive repetition of a nucleotide triplet (CAG) in the Huntingtin gene. The number of CAG repetitions varies from person to person. Healthy individuals can have up to 36 repetitions. Nevertheless, as of 36 repetitions, Huntington's disease develops. The direct consequence of this excess of repetitions is the synthesis of a mutated protein-different from what would be obtained without the additional CAG repetitions-which has been considered the main cause of the disease for the past 20 years.

"What we have observed in our study is that the mutated fragment acting as a conveyor-the so-called messenger RNA-is key in the pathogenesis," says Dr. Eulàlia Martí, lead author of the research project, together with Xavier Estivill, and acting group leader of the Genes and Disease laboratory at the Centre for Genomic Regulation. "The research on this disease being done by most groups around the world seeking new therapeutic strategies focuses on trying to prevent expression of the mutated protein. Our work suggests that blocking the activity of messenger RNA (the "conveyor"), would be enough to revert the alterations associated with Huntington's disease. We hope this will contribute to improving the strategies in place to find a cure," states the researcher.

Going deeper in molecular mechanisms enables progress to future applications

This work underscores the importance of rethinking the mechanisms behind illnesses in order to find new treatments. The work of scientists at the CRG has helped explore the molecular mechanisms that cause the disease. Now, their results will contribute to better delimit research efforts towards a cure.

As opposed to most other research groups, Eulàlia Martí's team has sought to identify whether the problem resided in the messenger RNA - which would be the copy responsible for manufacturing the protein - or in the resulting protein. Prior work indicated that mRNA produced, in addition to defective protein, other damages. This previous work was the starting point for Martí and her fellow researchers, who have finally demonstrated that mRNA has a key role in the pathogenesis of Huntington's chorea. "The research we have just published points to RNA's clear role in Huntington's disease. This information is very important in translational research to take on new treatments," says the researcher.

More in-depth studies on these mechanisms are yet to be done. For example, research must explore whether it will be possible to revert the effects of Huntington's disease in patients, just as researchers have demonstrated in mouse models. It also remains to be seen whether the proposal of the CRG researchers can be used in a preventive way, as the disease does not generally appear until after 40 years of age (in humans). Despite the remaining gaps, the published work makes for a key step in knowledge of the mechanisms of this neurodegenerative disease that, as of today, remains incurable.

Media Contact

Laia Cendros
laia.cendros@crg.eu
34-607-611-798

 @CRGenomica

http://www.crg.es 

Laia Cendros | EurekAlert!

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>