Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The media is the message: How stem cells grow depends on what they grow up in

05.05.2015

Using mathematical model, UC San Diego researchers devise optimal human stem cell culture

Human pluripotent stem cells (hPSCs) possess the ability to grow into almost any kind of cell, which has made them dynamic tools for studying early human development and disease, but much depends upon what they grow up in.


This image shows colonies of human embryonic stem cells seen with a fluorescent microscope.

Credit: California Institute for Regenerative Medicine

Writing in the May 4 online issue of the journal Scientific Reports, researchers at University of California, San Diego School of Medicine used a powerful statistical tool called "design of experiments" or DOE to determine the optimal cell culture formula to grow and produce hPSCs.

"Currently, there are different culture methods and media that are not optimized or even chemically defined. There are several factors that may affect the growth of stem cells based on batch-to-batch media variation," said Alysson Muotri, PhD, associate professor in the UC San Diego departments of Pediatrics and Cellular and Molecular Medicine. "This affects science in many ways. For example, it slows down progress because conditions may not be pristine. It also makes it difficult for other labs to validate data because the media they use will likely not be the same as in the original experiments."

Muotri and colleagues used DOE to measure two critical growth factors used in hPSC media: basic fibroblast growth factor (bFGF) and neuregulin-1 beta 1 (NRG-1 beta 1). DOE is often used in scientific endeavors to measure and account for variations in data, but not so much in biology, said Muotri.

"If you ask a biology student what is the ideal temperature and pH for an enzyme, he/she will try to determine the best temperature in one experiment and the best pH in another experiment. Then, the student will erroneously conclude that these represent the optimal temperature and pH," said Muotri. "What is missing is the interaction between temperature and pH. The best working temperature may not be the most optimal pH condition. DOE takes into account positive, negative or neutral interactions between multiple factors at the same time."

Building upon earlier work, which had analyzed hundreds of other factors in hPSC media, the researchers determined the best formulations for bFGF and NRG-1 beta 1. They noted, however, that their findings are not fixed. "If science discovers a new factor that affects hPSC proliferation, we can add it into our DOE matrix to quickly test and re-formulate the media," said Muotri.

The researchers hope their findings will lead to a new standard for hPSC cultures. "Any lab in the world can have access to the same formulation, with no variability," said Muotri. "We also think this method could be applied towards the development of culture conditions during differentiation of human stem cells. Ideally, we want to create transition media formulations that subtly change during cell type specialization, mimicking the human embryo."

Muotri said his team is working with the UC San Diego Technology Transfer Office to find industry partners to assist in making the new technology accessible to all laboratories using hPSCs.

###

Co-authors include Paulo A. Marinho and Thanathom Chailangkarn, UCSD Department of Pediatrics/Rady Children's Hospital-San Diego, Department of Cellular and Molecular Medicine and UCSD Stem Cell Program.

Funding for this research came, in part, from the California Institute for Regenerative Medicine and the National Institutes of Health (1-DP2-OD006495-1).

Media Contact

Scott LaFee
slafee@ucsd.edu
619-543-6163

 @UCSanDiego

http://www.ucsd.edu 

Scott LaFee | EurekAlert!

Further reports about: Cellular Department Medicine Molecular Muotri UCSD University of California beta stem cells temperature

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>