Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mechanism of action of an antitumor drug used for the treatment of glioblastoma

03.05.2019

Glioblastoma is an incurable type of brain tumour that is frequently associated with mutations in the epidermal growth factor receptor (EGFR). The main EGFR mutation found in glioblastomas, called EGFRvIII, is treated with the antibody mAb806, a drug developed by the Ludwig Institute for Cancer Research (US) about 20 years ago, but whose mechanism of action was unknown. In collaboration with the University of Stockholm (Sweden) and the University of California San Diego (USA), researchers at the Institute for Research in Biomedicine (IRB Barcelona) have unravelled how this antibody acts on mutated EGFR, thus dramatically extending its application to virtually any glioblastoma mutations.

Published in the journal PNAS, the study paves the way for new treatments for cancer. The results of the work indicate that, in contrast to what was previously believed, mAb806 could be used to treat many tumours that carry EGFR mutations and not only for a specific mutation.


This is the structure of EGFR. Purple indicates the region recognised by mAB806.

Credit: Laura Orellana

Furthermore, the scientists have demonstrated that even when EGFR is not mutated, it can be treated in order to make it susceptible to mAb806 therapy.

"This finding lays the rational basis for anti-EGFR combination treatments with antibodies and kinase inhibitors, instead of "blind testing" them, as has been done until now," says Modesto Orozco, head of the Molecular Modelling and Bioinformatics Lab at IRB Barcelona and senior professor of the Faculty of Chemistry at the University of Barcelona.

More than 100 mutations in EGFR have been described to give rise to glioblastoma. By means of computational simulation, Laura Orellana, first author of the study who began this project during her PhD at IRB Barcelona and is now a researcher at Stockholm University, discovered that the mutations studied induced a similar change in the shape of the receptor.

"Surprisingly, this change in EGFR matches the shape recognised by mAb806, but this hadn't previously been observed experimentally," she comments.

Previous studies had reported that mAb806 recognises a region of EGFR that is normally hidden. In certain tumours carrying EGFRvIII, half of the receptor has been removed, so that this region becomes accessible, thereby allowing the therapeutic use of the antibody.

The researchers have now demonstrated that many different mutations on EGFR change the shape of the receptor, allowing mAb806 to detect this "hidden" region.

These changes in the shape of EGFR affect its activation. While analysing computational simulations of EGFR, Orellana discovered that while a part of the receptor is "eliminated in EGFRvIII, in other mutants this same part is "displaced", with the same objective of activating the receptor.

"This surprising finding provides a rational basis to explain why distinct mutations in glioblastoma respond to drugs in a similar manner," explains Orellana. "Mutations that are seemingly different are in fact equivalent and have the same effect on the receptor, driving the formation of a tumour".

In collaboration with the Ludwig Institute for Cancer Research and the University of California San Diego, the researchers validated this computational hypothesis using cell and animal models, which confirmed the therapeutic potential of mAb806a.

"Given the numerous clinical assays underway with mAb806 worldwide, the translation of these results into clinical practice will be much faster than normal, and treatment with this antibody is expected to be suitable for many types of tumour that carry similar mutations, such as tumours found in the colon, breast and skin," says Orozco.

###

The study is a collaboration between IRB Barcelona, the Royal Institute of Technology (KTH) of Stockholm, the University of Stockholm, the Ludwig Institute for Cancer Research, the University of California San Diego, the Barcelona Supercomputing Center, the University of Lisbon and the Centre de Biochimie Structurale (CNRS).

The study was funded by the Ministry of Science, Innovation and Universities, ICREA, the Catalan Government, the European Research Council, Vetenskapsrådet and the Swedish e-Science Research Center (E.L.)

Reference article:

Laura Orellana, Amy H. Thorne, Rafael Lema, Johan Gustavsson, Alison D. Parisian, Adam Hospital, Tiago N. Cordeiro, Pau Bernadó, Andrew M. Scott, Isabelle Brun-Heath, Erik Lindahl, Webster K. Cavenee, Frank Furnari and Modesto Orozco.

Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope.

PNAS (2019) doi: 10.1073/pnas.1821442116.

Media Contact

Communications IRB Barcelona
communications@irbbarcelona.org

http://www.irbbarcelona.org 

Communications IRB Barcelona | EurekAlert!
Further information:
https://www.irbbarcelona.org/en/news/researchers-discover-the-mechanism-of-action-of-an-antitumour-drug-used-for-the-treatment-of
http://dx.doi.org/10.1073/pnas.1821442116

Further reports about: CANCER EGFRvIII IRB PNAS antitumor drug computational simulations mutations receptor tumours

More articles from Life Sciences:

nachricht A question of time
03.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pluripotency or differentiation -- That is the question
03.05.2019 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum sensor for photons

A photodetector converts light into an electrical signal, causing the light to be lost. Researchers led by Tracy Northup at the University of Innsbruck have now built a quantum sensor that can measure light particles non-destructively. It can be used to further investigate the quantum properties of light.

Physicist Tracy Northup is currently researching the development of quantum internet at the University of Innsbruck. The American citizen builds interfaces...

Im Focus: RadarGlass: Functional thin-film structures for integrated radar sensors

It is only an inconspicuous piece of paper, but it is an important milestone for autonomous driving: At the end of 2018 the three partners from the joint research project RadarGlass applied for a patent for an innovative radar system. The Fraunhofer Institute for Laser Technology ILT from Aachen, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP from Dresden and the Institute of High Frequency Technology IHF of RWTH Aachen University have developed a coating process chain that enables radar sensors to be integrated in car headlights. After almost two years in development they have manufactured a working prototype.

Completely autonomous vehicles pose an enormous challenge for sensor technology because, in principle, the supporting system must hear, see and feel better...

Im Focus: Novel method developed by HKBU scholars could help produce purer, safer drugs

Physics and Chemistry scholars from Hong Kong Baptist University (HKBU) have invented a new method which could speed up the drug discovery process and lead to the production of higher quality medicinal drugs which are purer and have no side effects. The technique, which is a world-first breakthrough, uses a specific nanomaterial layer to detect the target molecules in pharmaceuticals and pesticides in just five minutes.

The new HKBU invention can be applied to the drug discovery process, as well as the production and quality control stages of pharmaceutical manufacturing. It...

Im Focus: Decoupled graphene thanks to potassium bromide

The use of potassium bromide in the production of graphene on a copper surface can lead to better results. When potassium bromide molecules arrange themselves between graphene and copper, it results in electronic decoupling. This alters the electrical properties of the graphene produced, bringing them closer to pure graphene, as reported by physicists from the universities of Basel, Modena and Munich in the journal ACS Nano.

Graphene consists of a layer of carbon atoms just one atom in thickness in a honeycomb pattern and is the subject of intensive worldwide research.

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Self-powered wearable tech

03.05.2019 | Materials Sciences

Researchers find gene for urethral obstruction

03.05.2019 | Health and Medicine

Launch of research project: The future of agriculture is digital

03.05.2019 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>