Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The internal clock of cells orchestrates 25 percent of all protein switches

11.01.2017

Circadian is the latin meaning for “about a day”. Circadian clocks have evolved to adapt our lives to the daily environmental changes on earth: light and warmth during the day and darkness and cold at night. Scientists at the Max-Planck-Institute of Biochemistry in Martinsried discovered with the help of the mass spectrometry, that more than 25 percent of the molecular protein switches in mouse liver cells change in a daily manner. These rhythmic switches are binding sites for phosphate molecules, that regulate the function of proteins, and thereby the daily metabolic processes in the organ. The study was published in the journal Cell Metabolism.

Matthias Mann, head of the department “Proteomics and Signal Transduction” at the Max-Planck-Institute of Biochemistry has optimized, together with his research group, the mass spectrometry for use in the clinic over the last few years. This technology enables analysis of proteins both quantitatively and qualitatively in cells and tissue.


25 percent of the molecular protein switches are active in the rhythm of the internal clock of a cell. This was shown with the help of the mass spectrometry in the livers of mice.

Illustration: Max Iglesias © MPI of Biochemistry

Additionally, mass spectrometry also enables researchers to study the phosphorylation of proteins - the binding of a phosphate molecule can change the structure and the molecular characteristics of the protein. The phosphate molecule thereby functions like a protein switch, capable of changing the protein activity and function.

This method was used by the scientists to investigate whether the inner clock, the circadian clock, in cells and organs can drive changes of these phosphate switches. Charo Robles, head of the study explains: “The circadian clock is the internal timer in the cell. The rotation of the earth leads to periodic changes of the environment, associated with the day and night that influences living organisms. The inner clock allows organisms to predict the daily fluctuations in the environment and thus adapt the cellular metabolism and physiology.

In the past, it was already discovered that a large proportion of the transcriptome, a set of the messenger RNA molecules and the manual for the proteins, as well as a proportion of the proteins themselves in cells and tissues undergo circadian cyclic rhythms of abundance. This study examined in the circadian changes of the phosphoproteome, the whole set of phosphorylation binding sites in proteins, in the mouse liver.

“While approximately 10 percent of the messenger RNA and the proteins cycle daily in their abundance, we now show that more than 25 percent of the protein switches, phosphorylation events, change across the day and night to control the function of the proteins in the liver of mice.”, says Robles. “As a simple analogy in our daily lives: in the morning we switch the computer when we arrive at work, and switch it off again in the evening, while at home we might switch on the TV in the evening.”

With the help of mass spectrometry the scientists were able to analyze the complex network of the protein switches. “We do not detect just one switch but rather we can analyze when the different switches are turned on and off in the whole city as analogue of the cell”. The scientists showed that around 2,000 phosphorylation positions change between the day and night. Some switches were newly discovered in this study.

With this knowledge, when specific proteins are activated we could promote so called “Chronotherapy”. Cellular processes as well as whole organ physiology display cycles of activity across the day. This influences the efficacy and the tolerance of medication. “In the future if we know when in an individual patient specific signaling pathways are activated, we could optimize the treatment of diseases, giving the medication at the appropriate time point to increase efficiency and minimize adverse effects.”, says Robles.

Original publication:
M.S. Robles, S.J. Humphrey & M. Mann: “Phosphorylation is a central mechanism for circadian control of metabolism and physiology”. Cell Metabolism, 2016
DOI: 10.1016/j.cmet.2016.10.004

Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: mmann@biochem.mpg.de
www.biochem.mpg.de/mann

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en - homepage max planck institute of biochemistry
http://www.biochem.mpg.de/en/rd/mann - homepage Matthias Mann

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>