Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The impact of epigenetics on brain development

02.02.2016

Scientists of CNMPB, MPIbpc and DZNE in Göttingen describe a molecular mechanism that controls global epigenetic programs in brain development. Published in Cell Reports.

In mammals, neurogenesis is mainly restricted to development. However, certain regions of the forebrain have the capability of generating new neurons also in the adulthood. Key mechanism is the so-called epigenetics and chromatin remodeling, which controls the expression of genes and triggers the differentiation of neuronal stem cells.


Chromatin remodeling activity and functionality of BAF complexes in forebrain development. (A) The multi-subunit BAF complex alters the chromatin structure in an energy-consuming process. By local reorganization from inactive heterochromatin to the active form (euchromatin), single genes become accessible by activating or repressing transcription factors. (B) The proteins BAF155 and BAF170 serve as scaffolding subunits to maintain the stability of the entire BAF complex. The forebrain structure is not formed in deletion mutants that lack these factors. Tuoc / CNMPB

However, there is little information on how epigenetic programs and chromatin regulation exactly interact to control the fate of neural stem cells. Scientists of the Göttingen Cluster of Excellence and the DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University Medical Center Göttingen (UMG), the Max Planck Institute for Biophysical Chemistry (MPIbpc) and the German Center for Neurodegenerative Diseases (DZNE) gained striking new insight into the role of the chromatin remodeling multi-subunit BAF complex in forebrain development.

The scientists, for the first time provide evidence for a molecular mechanism that involves the BAF complex to control global epigenetic programs and gene expression programs. The findings have been published recently in the Cell Reports journal.

Original publication: Narayanan R, Pirouz M, Kerimoglu C, Kiszka K, Pham L, Wagener R, Rosenbusch J, Kessel M, Fischer A, Stoykova A, Staiger JF, Tuoc T (2014) Loss of the entire multi-subunit BAF (mSWI/SNF) complexes impairs global epigenetic programs in forebrain development. CELL REPORTS, 13(9): 1842-54.

One of the major challenges in neurobiology is to understand how the fate of neural stem cells is controlled. During brain development, the BAF multi-protein complex acts as the central relay station for the activation of differentiation programs to generate neural cells from neural stem cells. Remodeling of the chromatin structure is initiated by interaction of the complex with specific genomic sequences.

Inactive, condensed heterochromatin is converted into the active loosely packed form (euchromatin), making genes accessible for activation or inactivation by transcription factors, which are involved in neuronal differentiation processes. Areas in the genome, which are subjected to chromatin remodeling, are determined by a priori chemical modification mediated by epigenetic influences.

A full understanding of how the BAF complex exactly influences the fate of neuronal stem cells has been hindered by the absence of mutant models completely lacking BAF complexes. Here the scientists have been able to create knockout mutants lacking the entire BAF complex.

The result: The subunits BAF150 und BAF170 are central key factors, acting as scaffolding proteins for the interaction with the up to 15 subunits of the functional complex. These subunits serve as regulators of stability and functionality of the BAF complex, as indicated by a massive impairment of the murine forebrain development in BAF155/BAF170 deletion mutants.

Together with a dramatic reduction in active euchromatin, the loss of functional BAF-complexes resulted in a comprehensive decrease of gene expression events. Simultaneously, the scientists observed a global increase in repressive heterochromatin marks. The authors conclude: BAF complexes rather influence repression mechanism in neuronal cells indirectly than directly activate gene expression programs.

To be able to quickly activate the differentiation to neural cells during brain development, specific genes are maintained in a certain state. This state is significantly controlled by the presence of certain epigenetic markers, which trigger or repress transcription processes. During brain development, the BAF complex interacts with theses markers to support the switch from the inactive condition to the active state and thus initiates chromatin remodeling.

Tran Tuoc, senior author of the study, is convinced: “These findings improve our understanding of the epigenetic and chromatin remodeling as regulators of neuronal stem cell-fate and developmental plasticity. They may help to design new strategies for enhancing brain repair, e.g. in neurodegenerative disorders.”

Weitere Informationen:

http://www.neuroanatomie.uni-goettingen.de/en/home - Homepage of the Institute of Neuroanatomy, University Medical Center Göttingen
http://www.cnmpb.de - Cluster of Excellence and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>