Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hidden order in DNA diffusion

08.06.2017

A different approach to analyzing the motion of diffusing molecules has helped overturn the long-held assumption that DNA molecules move in a haphazard way. KAUST researchers reveal for the first time that DNA molecules move not by random Brownian motion but by a nonrandom walk related to polymer dynamics in a way that conserves overall Brownian characteristics1.

"Brownian motion is a process whereby molecules move randomly in a fluid by colliding with other molecules," explained Dr. Maged Serag, a postdoctoral researcher in Bioscience at KAUST. "In living cells, Brownian motion allows molecules to move rapidly and efficiently between cell organelles and interact with other molecules."


A new single-molecule tracking method based on fluorescence molecular imaging revealed nonrandom motion of DNA molecules.

Credit: © KAUST Anastasia Khrenova

For many decades, scientists have used a relatively simple test to determine whether molecular diffusion is Brownian: when the mean-square displacement (MSD) of a population of molecules increases linearly over time. In a uniform medium like pure water, this means that a drop of saline solution will expand at a rate that makes the MSD increase linearly with time.

DNA conforms to this macroscale diffusion behavior, and so it has been assumed that its motion is Brownian like other molecules. However, it is also known that DNA, being a long polymer molecule, writhes spontaneously due to intramolecular forces.

"The DNA molecule can be viewed as a semi-flexible chain," said Serag. "If we follow its motion at short timescales and in a space close to its size, we see worm-like motional behavior."

Serag and colleague Associate Professor Satoshi Habuchi set out to see whether this writhing motion could affect the diffusion of DNA.

"Dr. Serag came up with a unique idea to describe the motion of a molecule based on the probability of occupying lattice sites rather than by mean-square displacement," said Habuchi. "MSD has been the standard method to detect deviation from Brownian motion, but it does not reveal any nonrandom motion for DNA molecules. By using this probabilistic approach instead, we were able to detect and quantify hidden nonrandom motion."

By developing a new theoretical framework in which motion is modeled in a step-wise manner accounting for molecular flexing, DNA molecules were found to move nonrandomly with varied speed and molecular 'track' in a way that precisely conserved the Brownian linear MSD.

"The most important result of this study is that we have demonstrated that a linear MSD does not always indicate underlying Brownian motion," explained Habuchi. "With this new theoretical framework, we can detect the nonrandom motion of single molecules that cannot be captured by conventional MSD analysis."

Media Contact

Michelle D'Antoni
michelle.dantoni@kaust.edu.sa

http://kaust.edu.sa/ 

Michelle D'Antoni | EurekAlert!

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>