Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The herbivore dilemma: How corn plants fights off simultaneous attacks

09.02.2016

Maize plants may face a metabolic tradeoff when defending against both aphids and caterpillars

Corn seedlings are especially susceptible to hungry insect herbivores, such as caterpillars and aphids, because they lack woody stems and tough leaves. So what's a tender, young corn plant to do?


Herbivorous insects feeding on a corn stalk.

Photo by Meena Haribal

A recent study by Professor Georg Jander's group at the Boyce Thompson Institute (BTI), finds that corn plants may make serious trade-offs when defending themselves against multiple types of insects. Some corn varieties make themselves more vulnerable to aphids after generating defensive compounds against nibbling caterpillars. The results, which appear in the journal Molecular Ecology, may lead to the development of corn plants that are naturally more resistant to certain insects.

"It's like a metabolic dilemma," said Vered Tzin, a first author and postdoctoral scientist in the Jander laboratory. "When caterpillars are feeding, there's a change in the metabolic pathway that makes chemical defense compounds that protects the plants from caterpillars. But when we studied aphids, it seems like the same compounds that make the plants caterpillar-resistant have the potential to make them aphid-susceptible."

Corn plants face an onslaught of different herbivorous insects that chew on leaves, pierce and suck out sap or plant cell fluids, bore into stems or consume the roots. Researchers estimate that insects consume 6-19 percent of the world corn crop each year, while also spreading bacteria and viruses between plants.

To defend against these attacks, corn plants have both physical and chemical defense mechanisms. To ward off aphids, plants make callose, a carbohydrate that can seal off openings between cells and to stop aphids from sucking out the sap from the tissues through their needle-like stylet. Callose formation is triggered by a defensive compound called DIMBOA. In the event of a caterpillar attack, plants produce a compound called MBOA that deters their feeding. Both MBOA and DIMBOA are in the same metabolic pathway and come from a molecule called a benzoxazinoid.

Because both defensive compounds come from the same parent molecule, the researchers suspected that feeding by one group of insects, such as chewing caterpillars, might affect the plant's ability to fight off another group, like aphids.

To test this idea, the researchers grew corn seedlings of a common variety, called B73, and exposed some to caterpillars. They then seeded them with aphids and counted the number of offspring that the aphids produced on pristine plants, compared to previously nibbled ones. The aphids consistently produced more offspring on corn that had been pre-chewed by caterpillars.

But, when the researcher tested other corn varieties, individual results would vary. They repeated the experiment with 17 different lines of corn from around the world. Like B73, some varieties supported more aphid offspring after a caterpillar feeding, while the pre-feeding reduced the number of aphids or had no effect on other varieties.

The variation they saw is likely due to the evolutionary history of the different corn varieties. Aphids tend to be more common in temperate areas, such as the Midwest, where they spread barley yellow dwarf virus and cereal yellow dwarf virus, while caterpillars are a larger problem in tropical areas. Different varieties likely arose from breeding programs aimed at fighting off the threats that corn faces in different environments.

To identify genes that may play a role in this interaction, the researchers bred B73 plants with another variety called Ky21, which hosted fewer aphid offspring after caterpillar feeding. Using a genetic approach, they identified three genome regions, on chromosomes 1, 7 and 10, that appear to have a significant impact on a corn plant's aphid susceptibility. By breeding for specific genetic variations that naturally reduce caterpillar and aphid damage, scientists can develop new crop varieties that will require fewer pesticide applications.

In the future, the Jander group plans to use a similar approach to see how corn plants respond to simultaneous attacks from other types of insects and pests that attack different plant tissues.

"We can use a genetic approach to ask ecological questions and try to understand how a plant responds to two organisms," said Tzin, pointing out that most plant-insect research focuses on the plant's response to one type of insect at a time. "We should use more genetic tools to answer ecological questions."

###

Media Relations Contacts: Patricia Waldron (607-254-7476, pjw85@cornell.edu) or Kitty Gifford (607-592-3062, kmg35@cornell.edu)

To learn more about Boyce Thompson Institute (BTI) research, visit the BTI website at http://bti.cornell.edu.

Connect online with BTI at http://www.facebook.com/BoyceThompsonInstitute and http://www.twitter.com/BTIScience.

About Boyce Thompson Institute

Boyce Thompson Institute is a premier life sciences research institution located in Ithaca, New York on the Cornell University campus. BTI scientists conduct investigations into fundamental plant and life sciences research with the goals of increasing food security, improving environmental sustainability in agriculture and making basic discoveries that will enhance human health. Throughout this work, BTI is committed to inspiring and educating students and to providing advanced training for the next generation of scientists. For more information, visit http://www.bti.cornell.edu.

Media Contact

Patricia Waldron
pjw85@cornell.edu
607-254-7476

 @BTIscience

http://bti.cornell.edu 

Patricia Waldron | EurekAlert!

More articles from Life Sciences:

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Blood and sweat: Wearable medical sensors will get major sensitivity boost
18.02.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria

18.02.2020 | Life Sciences

First research results on the "spectacular meteorite fall" of Flensburg

18.02.2020 | Earth Sciences

Blood and sweat: Wearable medical sensors will get major sensitivity boost

18.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>