Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The glue that keeps cells together

14.06.2017

Studies conducted by the Biocentre shed new light on cell-cell contacts: Physical effects play an important role in their generation and stability as the journal "Nature Physics" reports.

Controlled adhesion and division are crucial for our body's cells. This is the case, for instance, when the organs develop in an embryo or when broken skin is repaired during the healing process.


Snapshots of the bond of a giant vesicle on a plane model membrane. Dark pixels mark the points of contact between the membranes. They grow larger and more numerous over time.

(Picture: Susanne Fenz)

The importance of close cell-cell adhesion becomes evident especially when it is dysfunctional, for example when cells become loose in a tumour and break free. The tumour cell complex tends to dissolve in this case and create metastases.

Cadherins as key actors

The cadherin proteins assume a central role in the above mentioned examples. Located in the cell membranes, they are capable of creating strong bonds both among themselves and with the cadherins of other cells. A bond between two cadherin molecules of two cells triggers the formation of extensive contact zones.

The process of establishing and detaching contacts seems to be much more dependent on purely physical effects than thought previously. This is shown by computer simulations and experiments published in "Nature Physics" by Dr Susanne Fenz from the University of Würzburg's Biocentre with colleagues from Jülich, Stuttgart, Erlangen and Marseilles.

Connecting model membranes

The biophysicist brought together model membranes containing cadherin and then selectively changed different physical parameters that influence the membrane's fluctuation behaviour such as the concentration of sugar and salt.

"We observed that already very small changes had a huge impact on the formation and growth of cell-cell contacts," says Dr Fenz, who leads a junior research group at the Department for Cell and Developmental Biology (Zoology I). "So it is possible to regulate a biological process by changing only physical parameters such as the temperature or local lipid composition of the membrane."

But according to Fenz, it is still doubtful to what extent the results for the model membranes can be transferred to living systems. "We will have to confirm the relevance of our observations in living systems," says Susanne Fenz.

Focus on pathogens that cause sleeping sickness

The Würzburg researcher has a general interest in the biophysics of membranes. For example, she also studies the pathogens that cause the sleeping sickness. The protozoa of the species Trypanosoma are one of Professor Markus Engstler's focal areas of research; he is the head of the Department for Zoology I at the Julius-Maximilians-Universität (JMU) in Würzburg, Germany.

What's special about the cell membrane of Trypanosoma is that it is densely populated with a protein shell that is varied continuously in a population. This high variability of the protein shell allows the pathogens to hide efficiently from the immune systems of animals and humans.

Membrane fluctuations mediate lateral interaction between cadherin bonds. Susanne F. Fenz, Timo Bihr, Daniel Schmidt, Rudolf Merkel, Udo Seifert, Kheya Sengupta & Ana-Sunčana Smith. Nature Physics, 12. June 2017, DOI: 10.1038/nphys4138

Contact

Dr Susanne Fenz, head of the junior research group "Physics of the Cell", Biocentre of the University of Würzburg, JMU, T +49 931 31-89712, susanne.fenz@uni-wuerzburg.de

Weitere Informationen:

http://rdcu.be/tpWy The Nature Physics publication
http://www.zeb.biozentrum.uni-wuerzburg.de/people/staff_scientists/susanne_fenz/ Website of Dr Susanne Fenz

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>