Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first genome of a coral reef fish

29.09.2016

A genome for the blacktail butterflyfish may illustrate how reef fish adapt to challenging conditions in the Red Sea.

Sequencing the genome of an organism allows scientists to investigate its unique genetic make-up, its evolutionary links to other creatures, and how it has adapted to its environment. Researchers at King Abdullah University of Science and Technology (KAUST), Saudi Arabia, have sequenced the first reef fish genome, the blacktail butterflyfish (Chaetodon austriacus), an iconic Red Sea species considered to be an ‘indicator’ species for coral health.


Researchers at KAUST have sequenced the genome of a coral reef fish from the Red Sea, the blacktail butterflyfish, for the first time.

Copyright : Tim Sheerman-Chase via Flickr

While genome sequences already exist for well-established model species such as the zebrafish, which is commonly used in medical research, there are no genomes publically available for natural populations of tropical reef fish. Michael Berumen, Joseph DiBattista, and a multidisciplinary team at KAUST, sought to fill this significant gap in fish genomic data.

“The blacktail butterflyfish has one of the most restricted ranges of any butterflyfish species, largely concentrated in the northern and central Red Sea,” explains DiBattista. “Therefore, it is likely to have developed unique genomic adaptations to this environment.”

Identifying these genetic mechanisms may also help predict how other marine organisms could adapt to challenging sea conditions in future.

The team faced a considerable task when it came to sequencing the new genome, partly because they had no reference genomes from closely-related fish to compare. They took portions of gill filaments from a wild butterflyfish and generated a mix of DNA fragments or ‘reads’.

“We then undertook a series of steps to figure out which reads connected with each other, and as a whole, how they overlapped,” explains Berumen. “Imagine trying to reconstruct a lengthy book from tiny segments consisting of a few hundred characters, each taken from a random part of that book. This very quickly becomes a computer science problem since it would be impossible to do it manually. Most fish genomes consist of around a billion base pairs, or a book with a billion characters in our analogy!”

Berumen sought the bioinformatics expertise of Manuel Aranda's group at KAUST’s Computational Bioscience Research Center. Once the team had assembled the genome, they analyzed it to ensure it made sense; for example, checking for the existence of genes previously identified in other organisms.

Their final, high-quality genome includes 28,926 protein-coding genes. The team hope their genome will enable studies on the co-evolution of reef fish species and comparisons of gene sequences between closely-related fish across the Indo-Pacific region.

The genome may also help stem trading in wild reef fish, because aquaculture specialists may eventually be able use the data to produce new, aquarium-tolerant species to fulfill the market demand for decorative fish.

Associated links

Journal information

DiBattista, J. D., Wang, X., Saenz-Agudelo, P., Piatek, M. J., Aranda, M. & Berumen, M. L. Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (Chaetodon austriacus): current status and its characteristics. Molecular Ecology Resources early online (2016).

Michelle D'Antoni | Research SEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>