Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The fast dance of electron spins

07.10.2019

Chemists investigate the interactions of metal complexes and light

When a molecule is hit by light, in many cases a so-called "photoinduced" reaction is initiated. This can be thought of as the interplay of electron motion and nuclear motion. First, the absorption of light energetically "excites" the electrons, which for instance can weaken some of the bonds.


The extremely fast spin flip processes that are triggered by the light absorption of metal complexes were stimulated in the investigation.

Credit: © Sebastian Mai

Subsequently, the much heavier nuclei start moving. If at a later point in time the nuclei assume a favorable constellation with respect to each other, the electrons can switch from one orbit to another one. Controlled by the physical effect of "spin-orbit coupling" the electron spin can flip in the same moment.

This interplay of motion is the reason why spin-flip processes in molecules typically take quite long. However, computer simulations have shown that this is not the case in some metal complexes.

For example, in the examined rhenium complex the spin-flip process already takes place within ten femtoseconds, even though in this short time the nuclei are virtually stationary--even light moves only three thousandths of a millimeter within this time.

This knowledge is particularly useful for the precise control of electron spins, as, e.g., in quantum computers.

Investigation is based on enormous computer power

One of the biggest difficulties during the investigation was the huge amount of computer power that was required for the simulations. Although for small organic molecules one can nowadays carry out very accurate simulations already with a modest amount of computational effort, metal complexes present a much bigger challenge.

Among other reasons, this is due to the large number of atoms, electrons, and solvent molecules that need to be included in the simulations, but also because the electron spin can only be accurately described with equations from relativity theory.

Altogether, the scientists from the Institute of Theoretical Chemistry spent almost one million computer hours at the Austrian super computer "Vienna Scientific Cluster" in the course of their study. This is equivalent to about 100 years of computer time on a typical personal computer.

###

Publication in Chemical Science: Mai, Sebastian; González, Leticia. Unconventional two-step spin relaxation dynamics of [Re(CO)3(im)(phen)]+ in aqueous solution. Chemical Science 2019. DOI: 10.1039/C9SC03671G

Media Contact

Leticia González
leticia.gonzalez@univie.ac.at
43-142-775-2750

 @univienna

http://www.univie.ac.at/en/ 

Leticia González | EurekAlert!
Further information:
http://dx.doi.org/10.1039/C9SC03671G

More articles from Life Sciences:

nachricht Weak spot in pathogenic bacteria
07.10.2019 | Technical University of Munich (TUM)

nachricht Scientists create brain-mimicking environment to grow 3D tissue models of brain tumors
04.10.2019 | Tufts University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A fortress of ice and snow

MOSAiC expedition begins its ice drift on a floe at 85 degrees north and 137 degrees east

After only a few days of searching, experts from the MOSAiC expedition have now found a suitable ice floe, where they will set up the research camp for their...

Im Focus: Jellyfish's 'superpowers' gained through cellular mechanism

Jellyfish are animals that possess the unique ability to regenerate body parts. A team of Japanese scientists has now revealed the cellular mechanisms that give jellyfish these remarkable "superpowers."

Their findings were published on August 26, 2019 in PeerJ.

"Currently our knowledge of biology is quite limited because most studies have been performed using so-called model animals like mice, flies, worms and fish...

Im Focus: Many gas giant exoplanets waiting to be discovered

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions like NASA's WFIRST space...

Im Focus: Spider silk: A malleable protein provides reinforcement

Scientists from the University of Würzburg have discovered that spider silk contains an exceptional protein. It generates high bonding strength by making use of an amino acid scientists have hitherto paid little attention to. The finding could have important implications in many areas.

Why are the lightweight silk threads of web spiders tougher than most other materials? Scientists from the Universities of Würzburg and Mainz teamed up to find...

Im Focus: Symbiosis as a tripartite relationship

Joint press release by Kiel University and the GEOMAR Helmholtz Centre for Ocean Research Kiel

Investigation of viral communities of sponges allows new insights into the mechanisms of symbiosis

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

The fast dance of electron spins

07.10.2019 | Life Sciences

More energy means more effects -- in proton collisions

07.10.2019 | Physics and Astronomy

Weak spot in pathogenic bacteria

07.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>