Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dandelion uses latex to protect its roots against insect feeding

06.01.2016

Dandelions are troublesome weeds that are detested by most gardeners. Yet dandelions also have many insect enemies in nature. However, they are able to protect themselves with their latex, a milky, bitter-tasting sap. Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, and the University of Bern, Switzerland, have now demonstrated that a single compound in the latex protects dandelion roots against voracious cockchafer larvae. Thus, latex plays a crucial role in dandelion defense against root feeders. (PLOS Biology, January 2016, Open Access)

Dandelions are survival experts


The larva of a cockchafer Melolontha melolontha attacks the roots of a dandelion.

Meret Huber / Max Planck Institute for Chemical Ecology, PLOS Biology


Meret Huber studies latex metabolites in dandelion and their role in root herbivore defense

Anna Schroll

Dandelions (Taraxacum officinale agg.) are well-known plants of European and Asian origin that have spread around most of the temperate world. Children love their yellow flowers and even more the fluffy seed heads with their parachute-like seeds that can travel long distances by wind. Young plants grow with such force that they can penetrate even asphalt. Therefore dandelions have become a symbol for survival in modern cities.

In fields and meadows, the plant must fend off many herbivores, among them cockchafer larvae. The common cockchafer (Melolontha melolontha) spends the first three years of its life cycle underground as a grub feeding on the roots of different plants. One of its favorite foods is dandelion roots.

Like many other plants, dandelions produce secondary metabolites to protect themselves against herbivores. Some of these defenses, such as terpenes and phenols, are of pharmaceutical interest and are considered promising anti-cancer agents. The most important dandelion metabolites are bitter substances which are especially found in a milky sap called latex, a substance found in almost ten percent of all flowering plants.

Why dandelion latex is bitter

Scientists from the Department of Biochemistry and their colleagues from the University of Bern have now taken a closer look at dandelion latex. The scientists found the highest concentrations of the bitter latex in the roots of dandelions. Dandelions need to protect their roots very fiercely because these are the main storage organs for nutrients which fuel growth early in the spring.

One single defensive chemical protects the plant

The scientists tested first whether latex compounds produced by dandelion roots were negatively associated with the development of cockchafer larvae. They also wanted to know whether these compounds had a positive effect on the fitness and reproductive success of dandelions under Melolontha melolontha attack. An analysis of the components of dandelion latex revealed that one single substance negatively influenced the growth of cockchafer larvae. This substance was identified as the sesquiterpene lactone, taraxinic acid β-D-glucopyranosyl ester (TA-G). When the purified substance was added to an artificial larval diet in ecologically relevant amounts, the grubs fed considerably less.

The researchers succeeded in identifying the enzyme and gene responsible for the formation of a precursor of TA-G biosynthesis, and so were able to engineer plants with lower TA-G. Roots of engineered plants with less TA-G were considerably more attacked by cockchafer larvae. The chemical composition of latex varies between different natural dandelion lines. A common garden experiment with different lines revealed that plants which produce higher amounts of TA-G maintained a higher vegetative and reproductive fitness when they were attached by cockchafer larvae. “For me, the biggest surprise was to learn that a single compound is really responsible for a defensive function,” says Jonathan Gershenzon, the head of the Department of Biochemistry at the Max Planck Institute in Jena. “The latex of dandelions and other plants consists of such a mixture of substances that it didn’t seem necessarily true that one chemical by itself had such a protective role against our study insect.”

The combination of approaches as a key to success

“It was clearly the combination of techniques that was crucial for the success of our studies,” explains Matthias Erb from the University of Bern who led the study. “Each approach has its weaknesses that were balanced by the strengths of the others. We think that this type of interdisciplinary research can be very powerful to understand biological systems.”

The scientists are now planning further experiments study the co-evolution of dandelions and their root herbivores in order of find out whether the presence of root-feeding insects has shaped the plant defensive chemistry in the course of evolution and whether the insects show adaptations to dandelion defenses. [AO]

Original Publication:
Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., Swyers, M., Köllner, T. G., Vogel, H., Hammerbacher, A., Triebwasser-Freese, D., Robert, C. A. M., Verhoeven, K., Preite, V. Gershenzon, J., Erb, M. (2016). A latex metabolite benefits plant fitness under root herbivore attack. PLOS Biology, DOI: 10.1371/journal.pbio.1002332. Open Access
http://dx.doi.org/10.1371/journal.pbio.1002332

Further Information:
Meret Huber, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1329, mhuber@ice.mpg.de
Matthias Erb, University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland, +41 31 631 8668, matthias.erb@ips.unibe.ch
Jonathan Gershenzon, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1301, gershenzon@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie
Further information:
http://www.ice.mpg.de/

Further reports about: Chemical Ecology Melolontha melolontha dandelion herbivores insect larvae latex

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>