Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The chemical language of plants depends on context

02.07.2019

A team of scientists from the Max Planck Institute for Chemical Ecology in Jena, Germany, studied the ecological function of linalool, a naturally abundant volatile organic compound, in wild Nicotiana attenuata tobacco plants. They found the gene responsible for linalool synthesis and release which vary considerably in plants of the same species. Behavioral assays with tobacco hawkmoths in increasingly complex environments showed that the effects of linalool on the insects are quite variable, depending on the natural environment and the genetic makeup of the plant.

A team of scientists from the Max Planck Institute for Chemical Ecology in Jena, Germany, studied the ecological function of linalool, a naturally abundant volatile organic compound, in wild Nicotiana attenuata tobacco plants.


A Geocoris nymph is attacking a tiny tobacco hornworm which has just hatched from an egg.

Danny Kessler / Max Planck Institute for Chemical Ecology

They found the gene responsible for linalool synthesis and release which vary considerably in plants of the same species. Females of the tobacco hawkmoth (Manduca sexta) prefer to lay eggs on plants with a higher naturally occurring linalool.

At the same time, the more linalool a plant released, the more eggs and freshly hatched larvae were predated on by bugs. Behavioral assays in increasingly complex environments showed that the effects of linalool are quite variable, depending on the natural environment and the genetic makeup of the plant (Proceedings of the National Academy of Sciences of the United States of America, DOI: 10.1073/pnas.1818585116).

Interactions between tobacco plants, tobacco hawkmoths, and predatory bugs

Plants have evolved multiple strategies to defend themselves against herbivorous animals, especially insects. In addition to mechanical defenses, such as thorns and spines, plants also produce chemical defense compounds that hold insects and other herbivores at bay. These substances include volatile organic compounds, often only produced by plants after insect attack. Linalool is such a plant volatile organic compound; it mediates different ecological interactions with insects.

Its complex mode of action has already been the subject of previous investigations. It is known that linalool in tobacco plants can attract predatory Geocoris bugs to show them the way to their prey: the eggs or freshly hatched larvae of tobacco hawkmoths. However, as a floral scent component, linalool is also attractive for adult hawkmoths and influences mated female moths in their decision to lay their eggs on a plant.

A team of scientists from the Max Planck Institute for Chemical Ecology lead by Meredith Schuman and Ian Baldwin has now studied the ecological functions of the monoterpene linalool in wild Nicotiana attenuata plants in more detail.

The genetic analysis of linalool synthesis

The researchers observed a correlation between the rate of Manduca sexta eggs predated by Geocoris bugs and the amount of linalool produced by the respective plants. They didn’t observe such a correlation between five similar organic compounds emitted by tobacco plants and the egg predation rate. This indicates that linalool, in fact, functions as the plants’ chemical cry for help and attracts predatory bugs that attack herbivorous larvae.

“Tobacco plants vary a lot in their linalool emission. If linalool mainly has a defensive effect, that is attracting predators and repelling hawkmoths, we would expect there to be less variation. Obviously, linalool emission is not always advantageous for the plant. Therefore we wanted to explore systematically, which ecological interactions result from differences in linalool production,” Jun He, the first author of the study, explains.

The scientists were able to identify the enzyme that regulates linalool synthesis in Nicotiana attenuata and to determine its genetic basis. To achieve this, they crossed plants from native populations in Arizona which were high in linalool production, with plants from Utah which produced considerably less linalool. This approach, which is called forward genetics, allowed for an identification of genes underlying the natural variation of linalool synthesis.

Mirror images of molecules and their different effects

Linalool occurs in two different forms, so called enantiomers. Both enantiomers, (R)-(−)-linalool and (S)-(+)-linalool, are almost identical, however, their three-dimensional structures are mirror images of each other. Although only (S)-(+)-linalool was found in natural Nicotiana attenuata populations in Utah and Arizona, the researchers also used plants in their experiments which produced its mirror image, (R)-(−)-linalool. Both enantiomers are perceived as two different compounds by hawkmoths, resulting in different effects on their behavior.

Experiments in an increasingly complex context

The scientists tested the effect of these plants in behavioral assays with tobacco hawkmoths. They observed the behavior of mated females exposed to two different experimental plants in a choice assay in a wind tunnel in order to answer the question how linalool blends affect oviposition. Amazingly, egg-laying was only partially influenced by a manipulated production of the two linalool enantiomers. In fact, the genetic background of the plants, that is, whether a Utah or an Arizona plant had been modified to produce more linalool, had a much higher impact on the moths’ preferences. “It was surprising to us that experimental context mattered even more than the two different enantiomers”, Richard Fandino, who designed the wind tunnel experiments, explains. The researchers performed further experiments with moths and different tobacco plants in oviposition chambers and a large experimental tent, where moths were able to fly around. However, the differences in the moths’ responses to linalool emission vanished, the more complex the environment became.

The meaning of signals in context

Context is a linguistic term. It points to the problem that words or vocabulary may have different meanings depending on the communication situation in which they are used. This is also true for the “chemical vocabulary” component, linalool. Originally, the authors of the study expected that a chemical compound triggers a certain behavior. “However, our study showed that moths pay attention to many different features of plants when choosing where to feed or oviposit. Then, they integrate this information in order to choose among the available plants. Thus, differences in other plant properties as well as the availability of alternative plants and their characteristics, are likely to determine the importance of any individual cue: in this case, linalool”, Meredith Schuman, one of the main authors of the publication, summarizes.

A better understanding of context-appropriate plant defense against herbivores might help to overcome problems in standardized industrial agriculture, such as the evolution of resistance to commonly used pesticides.

Contact and Media Requests:

Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de
Download of high resolution images via http://www.ice.mpg.de/ext/downloads2019.html

Wissenschaftliche Ansprechpartner:

Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, +49 (0)3641 57 1100, baldwin@ice.mpg.de

Meredith C. Schuman, University of Zurich, Department of Geography, Winterthurerstrasse 190, 8057 Zürich, Switzerland, +41 44 63 55162, meredith.schuman@geo.uzh.ch

Originalpublikation:

He, J., Fandino, R. A., Halitschke, R., Luck, K., Köllner, T. G., Murdock, M. H., Ray, R., Gase, K., Knaden, M., Baldwin, I. T., Schuman, M. (2019). An unbiased approach elucidates variation in (S)-(+)-linalool, a context-specific mediator of a tri-trophic interaction in wild tobacco. Proceedings of the National Academy of Sciences of the United States of America, DOI: 10.1073/pnas.1818585116
https://doi.org/10.1073/pnas.1818585116

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie
Further information:
http://www.ice.mpg.de/

More articles from Life Sciences:

nachricht Giving chance a helping hand: chemists develop method for discovering new reactions
02.07.2019 | Westfälische Wilhelms-Universität Münster

nachricht Remote but remarkable: Illuminating the smallest inhabitants of the largest ocean desert
02.07.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

Im Focus: Experimental physicists redefine ultrafast, coherent magnetism

For the first time ever, experimental physicists have been able to influence the magnetic moment of materials in sync with their electronic properties. The coupled optical and magnetic excitation within one femtosecond corresponds to an acceleration by a factor of 200 and is the fastest magnetic phenomenon that has ever been observed.

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of...

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Remote but remarkable: Illuminating the smallest inhabitants of the largest ocean desert

02.07.2019 | Life Sciences

High-speed connectivity everywhere: IHP coordinates project on large scale test of 5G mobile networks

02.07.2019 | Information Technology

New measurements shed light on the impact of water temperatures on glacier calving

01.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>