Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Cerebellum Stores Data Like an MP3 Music File


The cerebellum contains a large amount of granule cells. They are responsible for the temporal coordination of motion sequences and make up more than half of the neurons in the brain. Previous studies have assumed that granule cells are a homogeneous population of cells. A group of researchers led by Dr Isabelle Straub and Professor Stefan Hallermann at Leipzig University took a closer look at these granule cells and found that they showed systematic differences. This allows granule cells to store information similar to MP3 music files. The scientists have now published their results in the journal eLife.

Information from sensory organs, such as the eyes or the ears, is passed from nerve cell to nerve cell in the form of electrical impulses. These impulses can have very different repetition rates, occurring between one and one thousand times per second.

At the end of their path, they eventually reach the granule cells in the cerebellum, where particular information is stored. Until now, scientists had assumed that granule cells are a uniform population of neurons that handle these different signals in the same way.

Dr Isabelle Straub from the Carl Ludwig Institute for Physiology investigated the electrical properties of cerebellar granule cells in mice. She discovered that the cells have different properties, enabling them to store more information. Granule cells can detect and transmit electrical impulses with specific frequencies.

“Granule cells function rather like a sieve. They filter out specific information according to frequency,” said Straub. The ability to decompose signals based on their repetition rate is similar to the Fourier transform – the transformation used in the digital compression of music files into MP3s.

The MP3 method makes it possible to store music as a greatly reduced amount of data. And indeed, computer simulations by Straub and her colleagues show that neural circuits with different granule cells have an increased storage capacity.

These latest research findings will help scientists to better understand how our brain processes and stores temporal information.

In a further step, the scientists can now investigate whether the possibility of separating incoming electrical impulses according to frequency, and thus increasing the storage capacity, can also be applied by other regions of the brain.

The Carl Ludwig Institute for Physiology at Leipzig University’s Faculty of Medicine is researching the basic functions of the nervous system.

In particular, its scientists are investigating how nerve cells communicate with each other, the changes that occur during learning, and brain energy metabolism.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Stefan Hallermann
T: 0341/9715500


Gradients in the mammalian cerebellar cortex enable Fourier-like transformation and improve storing capacity

Weitere Informationen:

Peggy Darius | Universität Leipzig
Further information:

More articles from Life Sciences:

nachricht Blowing in the wind: A polygynous shorebird decides where to breed based on the prevailing wind conditions
12.02.2020 | Max-Planck-Institut für Ornithologie

nachricht How roots find their way to water
12.02.2020 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

Im Focus: New insights could lead to superconductivity in ambient conditions

A team of researchers from Switzerland, the US and Poland have found evidence of a uniquely high density of hydrogen atoms in a metal hydride. The smaller spacings between the atoms might enable packing significantly more hydrogen into the material to a point where it could begin to superconduct at room temperature and ambient pressure.

The scientists conducted neutron scattering experiments at the Oak Ridge National Laboratory (ORNL) in the US on samples of zirconium vanadium hydride at...

Im Focus: Viscosity measurements offer new insights into the earth's mantle

An international research group with Dr. Longjian Xie from the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) of the University of Bayreuth has succeeded for the first time in measuring the viscosity that molten solids exhibit under the pressure and temperature conditions found in the lower earth mantle. The data obtained support the assumption that a bridgmanite-enriched rock layer was formed during the early history of the earth at a depth of around 1,000 kilometres – at the border to the upper mantle.

In addition, the data also provides indications that the lower mantle contains larger reservoirs of materials that originated in an early magma ocean and have...

Im Focus: Fast rotating white dwarf drags its space-time in a cosmic dance

According to Einstein's general relativity, the rotation of a massive object produces a dragging of space-time in its vicinity. This effect has been measured, in the case of the Earth’s rotation, with satellite experiments. With the help of a radio pulsar, an international team of scientists (with important contributions from scientists at the Max Planck Institute for Radio Astronomy in Bonn, Germany) were able to detect the swirling of the space-time around its fast-rotating white dwarf-companion star, and thus confirm the theory behind the formation of this unique binary star system.

In 1999, a unique binary system was discovered with the Australian Parkes Radio Telescope in the constellation Musca (the Fly), close to the famous Southern...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

Latest News

The Cerebellum Stores Data Like an MP3 Music File

12.02.2020 | Life Sciences

Blowing in the wind: A polygynous shorebird decides where to breed based on the prevailing wind conditions

12.02.2020 | Life Sciences

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

Science & Research
Overview of more VideoLinks >>>