Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The carbohydrate wind tunnel

01.10.2015

A new method enables researchers to sequence complex sugar molecules for the first time

A team of researchers from Berlin succeeded in an effort to fundamentally improve carbohydrate analysis. With the new method, developed by Kevin Pagel (Free University Berlin and Fritz Haber Institute of the Max Planck Society) and Peter Seeberger (Max Planck Institute of Colloids and Interfaces and Free University Berlin), complex glycans, building blocks of life such as DNA and proteins, can now be sequenced.

The quality control of synthetic carbohydrates is now possible as minimal impurities can be traced faster and more precisely. The new method is essential for the development of novel carbohydrate vaccines, drugs and diagnostics.

Seeberger explains: "The new method is fast, reliable and sensitive. The glycosciences will get a push, comparable to the advances when gene sequencing was first developed."

The structure of carbohydrates is much more complicated than that of genetic material or proteins. Carbohydrate chains can be formed from more than 100 building blocks that can be can be linked together in branched chains and these can have different spatial structures, called anomers. In comparison to that, DNA molecules that consist of 4 building blocks, and proteins that are based on 20 amino acids are comparatively simple.

Seven Nobel prizes were awarded in the glycosciences until 1974. After that, however, the advances in analytical methods did not keep up with those made in genetics. Glycans are important as sugars that cover human and bacterial cell surfaces are an essential part of the immune response and recognition events such as fertilization.

The incredible diversity of carbohydrates (which merely consist of carbon, hydrogen and oxygen) is a general challenge for chemists. Carbohydrate building blocks can link in many different ways. Even simple carbohydrates that have the same number of atoms and the same mass may differ in only one binding angle. These almost identical molecules, called isomers, exhibit very different biological functions. Glucose and galactose for example have an identical formula (C6H12O6 ) but their functions are different.

Chemists use tricks to identify molecules, because most molecules can´t be observed on the atomic level. Hence the molecular mass, electronic or electromagnetic properties are measured. These methods, however, cannot resolve the problems associated with carbohydrate isomers. Carbohydrate molecules consisting of the same number of specific atoms can differ in their composition, connectivity and configuration. So far their differentiation was a laborious and time-consuming task that required large amounts of sample.

The scientists from Berlin and Potsdam take advantage of the different shapes of carbohydrates. Depending on their shape, the molecules require different times to pass through a gas filled tube - comparable to the drag coefficient in a wind tunnel. Kevin Pagel and his colleagues combine this ion mobility measurement with mass spectrometry to find differences in composition, connectivity and configuration. Larger molecules are broken into fragments; during this fragmentation, however, the structural properties of the resulting parts are not altered such that the sum of fragment properties reflect that of the large molecule. This combination method is reminiscent of the Sherlock Holmes quote: “Once you eliminate the impossible, what remains must be the truth.”

Combined with a database, currently under development, and enlarged through the rapidly collaborations of other scientists, this method will be generalized in the future. Once a molecule is entered in the database, automated processes can be used to recognize them.

The new method will enable quality control for synthetic carbohydrates, produced by synthesis robots, adding building blocks like pearls on a string. Until now, impurities were hard to detect at levels below 5 percent while the new carbohydrate “wind tunnel” drastically lowers the sensitivity to 0.1 percent.

Glycobiology - the research field that focused on studying biologically active carbohydrates - is a rapidly developing field and Berlin is doubtlessly one of the global centers.


Contact

Prof. Dr. Peter H. Seeberger
Max Planck Institute of Colloids and Interfaces, Potsdam-Golm
Phone: +49 331 567-9301

Fax: +49 331 567-9102

Email: peter.seeberger@mpikg.mpg.de

Prof. Dr. Kevin Pagel
Institut für Chemie and Biochemie

Freie Universität Berlin
Phone: +49 30 838-72703

Email: kevin.pagel@fu-berlin.de


Original publication
J. Hofmann, H. S. Hahm, P. H. Seeberger & K. Pagel

Identification of carbohydrate anomers using ion mobility–mass spectrometry

Nature, 1 October 2015 (doi:10.1038/nature15388)

Prof. Dr. Peter H. Seeberger | Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Further information:
https://www.mpg.de/9674577/sugar-wind-tunnel

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>