Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain’s social network: Nerve cells interact like friends on Facebook

05.02.2015

Neurons in the brain are wired like a social network, report researchers from Biozentrum, University of Basel. Each nerve cell has links with many others, but the strongest bonds form between the few cells most similar to each other. The results are published in the journal Nature.

Nerve cells form a bewildering meshwork of connections called synapses – up to several thousand per cell. Yet not all synaptic connections are equal. The overwhelming majority of connections are weak, and cells make only very few strong links.


A neural network is like a social network: The strongest bonds exist between like-minded partners.

“We wanted to see if there are rules that explain how neurons connect in complex networks comprising millions of neurons,” says Professor Thomas Mrsic-Flogel, the leader of the research team from the Biozentrum (University of Basel) and UCL (University College London). “It turns out that one of the rules is quite simple. Like-minded neurons are strongly coupled, while neurons that behave very differently from each other connect weakly or not at all.”

Strong connections between close friends

The researchers focused on the visual area of the cerebral cortex, which receives information from the eye and gives rise to visual perception. Neurons in this part of the brain respond to particular visual patterns, but it is difficult to untangle which cells are synaptically connected because there are many thousands of them densely packed (close to 100.000 per cubic millimeter).

Using a combination of high resolution imaging and sensitive electrical measurements, the researchers found that connections between nearby neurons are organized like a social network. Sites like Facebook keep us in contact with large numbers of acquaintances, but most people have a much smaller circle of close friends. These are usually the friends with which we have most in common, and their opinions can be more important to us than the views of the rest.

"Weak contacts in the brain have little impact, despite being in the majority," says Mrsic-Flogel. “The few strong connections from neurons with similar functions exert the strongest influence on the activity of their partners. This could help them work together to amplify specific information from the outside world.”

Weak connections could be important for learning

But why do neurons share such large numbers of weak connections? “We think this might have to do with learning,” says Dr Lee Cossell, one of the lead authors of the study. “If neurons need to change their behavior, weak connections are already in place to be strengthened, perhaps ensuring rapid plasticity in the brain.” As a result, the brain could quickly adapt to changes in the environment.

This research is part of worldwide effort to shed light on how the brain generates perceptions, thoughts and actions by mapping the brain’s wiring diagram. “It reveals how networks of neurons interact together to process information. Understanding how neurons connect will pave the way for building detailed computer simulations of the brain,” says Mrsic-Flogel.

Research that explores how neurons connect will also be important for understanding neurological diseases. “If we know what the pattern of connections in the brain should look like, then we can start to figure out what happens when things go wrong, for example, in schizophrenia or autism,” adds Mrsic-Flogel.

Original source
Lee Cossell, Maria Florencia Iacaruso, Dylan R. Muir, Rachael Houlton, Elie N. Sader, Ho Ko, Sonja B. Hofer, Thomas D. Mrsic-Flogel
Functional organization of excitatory synaptic strength in primary visual cortex.
Nature, published online 4 February 2015.

Further information
Thomas D. Mrsic-Flogel, Department Biozentrum, University of Basel, Tel. +41 61 267 17 66, email: thomas.mrsic-flogel@unibas.ch

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>